• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)

On some behavioral peculiarities of magnetic type eigenmodes of a spherical particle with arbitrarily valued material parameters

Svishchov, YV
Organization: 

 

O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine
12, Proskura st., Kharkov, 61085, Ukraine

E-mail:  YuSvishchov@gmail.com

https://doi.org/10.15407/rej2020.04.003
Language: english
Abstract: 

 

Subject and Purpose. The spectral characteristics (eigenfrequencies, eigenmodes, Q-factors) of a spherical particle with arbitrarily valued permittivity and permeability are considered to take a further look into some important features of their behavior. The real and imaginary parts of the material parameters of the particle can be both positive and negative. The emphasis is on magnetic type modes.

Methods and Methodology. The spectral problem is solved using the electromagnetic field expansion in vector spherical wave functions.

Results. The first eigenfrequencies of a spherical particle have been calculated depending on its relative permittivity e 1 and relative permeability m 1 whose real and imaginary parts can take both positive and negative values. The eigenmodes split into two, internal and external, eigenmode families. The internal eigenmodes bear an independent, associated with eigenmode structure labeling in each quadrant of the plane (m 1 , e 1). The external eigenmodes, on the contrary, have a uniform labeling throughout the whole (m 1 , e 1) plane and bear a structural resemblance to surface plasmon oscillations distributed in the vicinity of the particle surface or outside it. In the first quadrant of the plane (m 1 , e 1), the external eigenmodes repeatedly interact with the internal eigenmodes, leading to either mode hybridization or mode type exchange. In the third quadrant of the plane (m 1 , e 1), the external eigenmodes can interact with one another. The anomalous behavior of the spectral characteristics of a spherical particle corresponds to the already known phenomenon of wave mode coupling described in the scientific literature well enough.

Conclusion. The performed study has revealed some new behavioral patterns as to the spectral characteristics of a spherical particle with arbitrarily valued permittivity and permeability

Keywords: dielectric ball, eigenfrequencies, eigenmodes, metamaterial, spherical particle

Manuscript submitted  30.03.2020
Radiofiz. elektron. 2020, 25(4): 3-9
Full text (PDF)

 

 

References: 
1. Mie, G., 1908. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys., 25(4), ss. 377-445. DOI: https://doi.org/10.1002/andp.19083300302
 
2. Debye, P., 1909. Der Lichtdruck auf Kugeln von beliebigem Material. Ann. Phys., 30(1), ss. 57-136. DOI: https://doi.org/10.1002/andp.19093351103
 
3. Gastine, M., Courtois, L., Dorman, J., 1967. Electromagnetic resonances of free dielectric spheres. IEEE Trans. Microwave Theory Tech., 15(12), pp. 694-700. DOI: https://doi.org/10.1109/TMTT.1967.1126568
 
4. Wolff, I., 2018. Electromagnetic Fields in Spherical Microwave Resonators H-Modes and E- Modes in Lossless Open Dielectric Spheres, Version 05.2018. [online preprint]. Research Gate, May 2018. [viewed 5 June 2019]. Available from: https://www.researchgate.net/publication/325335243 DOI: https://doi.org/10.23919/PIERS.2018.8597646
 
5. Klimov, V.V., 2002. Spontaneous emission of an excited atom placed near a "left-handed" sphere. Opt. Commun., 211(1-6), pp. 183-196. DOI: https://doi.org/10.1016/S0030-4018(02)01802-3
 
6. Svishchov, Yu., 2019. The eigenmode interaction in a spherical dielectric resonator. Radiof. Elektron., 24(4), pp. 11-19 (in Russian). DOI: https://doi.org/10.15407/rej2019.04.011
 
7. Svishchov, Yu., 2019. Interaction of eigenmodes in a spherical particle with negative values of its material parameters. Radio Phys. Radio Astron., 24(3), pp. 206-217 (in Russian). DOI: https://doi.org/10.15407/rpra24.03.206
 
8. Melezhik, P.N., Poedinchuk, A.E., Tuchkin, Yu.A., Shestopalov, V.P., 1988. On the Analytical Nature of the Phenomenon of Intertype Relationship of Natural Oscillations. Dok. Akad. Nauk SSSR, 300(6), pp. 1356-1359 (in Russian).
 
9. Wei, J., Xiao, M., 2007. Electric and magnetic losses and gains in determining the sign of refractive index. Opt. Commun., 270(2), pp. 455-464. DOI: https://doi.org/10.1016/j.optcom.2006.09.039
 
10. Afanas'ev, S.A., Sannikov, D.G., Sementsov, D.I., 2013. The refractive index sign chosen for amplifying and lossy metamaterials. J. Commun. Technol. Electron., 58(1), pp. 1-11. DOI: https://doi.org/10.1134/S1064226913010014
 
11. Grigorenko, A.N., 2006. Negative Refractive Index in Artificial Metamaterials. Opt. Lett., 31(16), pp. 2483-2490. DOI: https://doi.org/10.1364/OL.31.002483
 
12. Stratton, J., 1941. Electromagnetic Theory. New York, London: McGraw-Hill Book Company, Inc.
 
13. Morse, F.M., Feshbach, G., 1960. Methods of Theoretical Physics. Translated from English and ed. S.P. Alliluev. Vol. 2. Moscow, Russia: Inostrannaya Literatura Publ. (in Russian).