• Українська
  • English
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)

THE ANALYTICAL-NUMERICAL METHOD OF SOLVING THE PROBLEMS OF ELECTROMAGNETIC WAVES DIFFRACTION BY CIRCULAR RADIALLY INHOMOGENEOUS MAGNETODIELECTRIC CYLINDERS

Brovenko, AV, Melezhik, PN, Panin, SB, A. Poyedinchuk, Y
Organization: 

O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine
12, Proskura st., Kharkov, 61085, Ukraine
E-mail: melezhik@ire.kharkov.ua

https://doi.org/10.15407/rej2016.04.020
Language: Russian
Abstract: 

We suggest an analytical-numerical method for determining the diffraction characteristics of the plane linearly polarized electromagnetic wave scattered by a circular inhomogeneous isotropic magnetodielectric cylinder, which material parameters depend on the radial coordinate. The method is based on the construction of special solutions to Cauchy problem for Riccati equation and allows within a unified approach to investigate the processes of wave diffraction by both radially layered and continuous magnetodielectric cylindrical inhomogeneities. The efficiency of the proposed method was demonstrated by several examples of numerical solution of diffraction problems for circular non-uniform isotropic dielectric cylinders. We studied the total cross section of Luneberg lens for a number of focal parameters and the behavior of its field longitudinal component at resonant frequency when geometrical parameters vary. 

Keywords: analytical-numerical method, circular isotropic heterogeneous magnetodielectric cylinder, Luneberg lens, Riccati equation, total cross section, wave diffraction

Manuscript submitted 03.11.2016
PACS     02.90.+p; 02.60.Cb
Radiofiz. elektron. 2016, 21(4): 20-29
Full text (PDF)

References: 
  1. Burman, R., (1965), Some electromagnetic wave functions for propagation in cylindrically stratified media, IEEE Trans. Antennas and Propagation, AP–13(4):646-647. DOI: https://doi.org/10.1109/TAP.1965.1138484
  2. Selezov, N.T. and Yakovlev, V.V., (1978), Wave diffraction by symmetrical irregularities, Naukova dumka, Kiev: 148 p. (in Russian).
  3. Selezov, N.T., Kryvonos, Y.G., and Yakovlev, V.V., (1985), Wave scattering by local irregularities in continuous media, Naukova dumka, Kiev: 136 p. (in Russian).
  4. Nozaka, M. and Takaku, K., (1968), Scattering of electromagnetic waves by cylindrically inhomogeneous plasma, J. Phys. Soc. Jap., 24(1):172-184. DOI: https://doi.org/10.1143/JPSJ.24.172
  5. Bhartia, P., Shafai, L., and Hamid, M.A.K., (1971), Scattering by an imperfectly conducting cylinder with a radially inhomogeneous dielectric coating, Int. J. Electron., 31(5):531-535. DOI: https://doi.org/10.1080/00207217108938250
  6. Kriegsmann, G.A., (1976), An application of the method of geometrical optics to the scattering of plane electromagnetic waves of cylindrically confined cold plasmas, J. Math. Phys., 17(1):112-120. DOI: https://doi.org/10.1063/1.522790
  7. Lunov, W. and Tutter, M., (1967), Diffraction of electromagnetic waves on plasma cylinders, Plasma Phys., 9(2):97-112. DOI: https://doi.org/10.1088/0032-1028/9/2/301
  8. Iliynski, A.S. and Sveshnikov, A.G., (1971), Electromagnetic wave diffraction by an inhomogeneous bounded body, Vychislitelnye metody and programmirovanie, 16:66-71 (in Russian).
  9. Iliynski, A.S., Pavlov, A.L., and Sveshnikov, A.G., (1971), Numerical solution of the diffraction problem for an inhomogeneous bounded body, Vychislitelnye metody and programmirovanie, 16:116-124 (in Russian).
  10. Chang Shu-Kong and Mei, K.K., (1976), Application of the unimoment method to electromagnetic scattering of dielectric cylinders, IEEE Trans. Antennas and Propagation, 24(1):35-42. DOI: https://doi.org/10.1109/TAP.1976.1141281
  11. Vorontsov, A.A. and Mirovitskaya, S.D., (1986), On plane wave diffraction by a multi-layer dielectric cylinder, Radiotekhnika and elektronika, 31(12):2330-2334 (in Russian).
  12. Kotlyar, V.V. and Lichmanov, M.A., (2002), Diffraction of plane electromagnetic waves by a gradient optical element with transverse cylindrical symmetry, Fizika volnovykh protsessov and radiotekhnicheskie systemy, PGATE, Samara, 5(4):37-43 (in Russian).
  13. Kotlyar, V.V. and Lichmanov, M.A., (2002), Analysis of electromagnetic wave diffraction by an infinite circular cylinder with several homogeneous layers, Kompyuternaya optika, 24:26-32 (in Russian).
  14. Kotlyar, V.V. and Lichmanov, M.A., (2003), Diffraction of plane electromagnetic waves by a gradient dielectric cylinder, Kompyuternaya optika, 25:11-15 (in Russian).
  15. Azarenkov, N.A., Galaydych, V.K., and Kondratenko, A.N., (1990), Electromagnetic wave scattering by an inhomogeneous plasma cylinder, Ukrainskiy fizicheskiy zhurnal, 35(10):1513-1517 (in Russian).
  16. Kamke, E., (1971), Handbook on ordinary differential equations, Nauka, Moscow: 576 p. (Russian translation).
  17. Brovenko, A.V., (1988), A numerical algorithm for calculation of spectral characteristics of open resonators with dielectric insertions, Doklady Akademii Nauk Ukrainskoy SSR, 1:51-54 (in Russian).
  18. Bykov, A.A., Sveshnikov, A.G., and Trubetskov, M.K., (1990), Application of the incomplete Galerkin method to solving problems of electromagnetic wave diffraction by inhomogeneous cylinders, Zhurnal vychislitelnoy matematiki and matematicheskoy fiziki, 30(6):894-909 (in Russian).
  19. Iliynski, A.S., Pavlov, A.L., and Sveshnikov, A.G., (1991), Mathematical models of electrodynamics, Vysshaya shkola, Moscow: 224 p. (in Russian).
  20. Iliynski, A.S. and Nekrasov, L.M., (1995), A numerical method of solving the diffraction problem for inhomogeneous dielectric cylinders and its justification, Zhurnal vychislitelnoy matematiki and matematicheskoy fiziki, 35(1):53-70 (in Russian).
  21. Sveshnikov, A.G., (1977), Incomplete Galerkin Method, Doklady Akademii Nauk USSR, 236(6):1076-1079 (in Russian).
  22. Poyedinchuk, A.E., Tuchkin, Y.A., and Shestopalov, V.P., (1996), Wave diffraction in a locally inhomogeneous medium, Zhurnal vychislitelnoy matematiki and matematicheskoy fiziki, 36(7):135-149 (in Russian).
  23. Shestopalov, V.P., Tuchkin, Y.A., Poyedinchuk, A.E., and Sirenko, Y.K., (1997), New methods of solving direct and inverse problems of the theory of diffraction. Analytical regularization of boundary-value problems of electrodynamics, Osnova, Kharkov: 285 p. (in Russian).
  24. Brovenko, A.V., Melezhik, P.N., Panin, S.B., and Poyedinchuk, A.Ye., (2013), A semi-analytical method for solving problems of wave diffraction by inhomogeneous stratified media, Fizicheskie osnovy priborostroeniya, 2(1):34-47 (in Russian).
  25. Brovenko, A.V., Melezhik, P.N., and Poyedinchuk, A.Ye., (2013), Spectral problems in the theory of wave diffraction by layered media, Telecommunications and Radio Engineering. 72(20):1821-1838. DOI: https://doi.org/10.1615/TelecomRadEng.v72.i20.10
  26. Brovenko, A.V., Melezhik, P.N., Panin, S.B., and Poyedinchuk, A.Ye., (2013), Wave diffraction by a strip grating located at the boundary of an inhomogeneous stratified medium: Method of analytical regularization, Izvestiya vuzov. Radiofizika, 56(4):265-276 (in Russian).
  27. Brovenko, A.V., Poyedinchuk, A.Ye., and Melezhik, P.N., (2014), A semi-analytical method for solving problems of electromagnetic wave diffraction by inhomogeneous anisotropic layers, Telecommunications and Radio Engineering, 74(1):9-27. DOI: https://doi.org/10.1615/TelecomRadEng.v74.i1.20
  28. Krylov, V.I., Bobkov, V.V., and Monastyrny, P.I., (1977), Computational methods, Part 1, Nauka, Moscow: 304 p. (in Russian).