• Українська
  • English
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)

SCHUMANN RESONANCES FOR CONDUCTIVITY PROFILE OF ATMOSPHERE WITH SINGLE BENDING

Galuk, YP, Nickolaenko, AP, Hayakawa, M
Organization: 

Sankt-Petersburg State University
35, University Avenue., St. Petersburg, Peterhof 198504, Russia
E-mail: galyuck@paloma.spbu.ru

O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine
12, Proskura st., Kharkov, 61085, Ukraine
E-mail: perov@ire.kharkov.ua

Institute Hayakawa, the seismic company electromagnetism,
Incubation Center 508 Telecommunication University,
Chofugaoka 1-5-1, Chofu, Tokyo 182-8585, Japan
E-mail: hayakawa@hi-seismo-em.jp

https://doi.org/10.15407/rej2015.03.022
Language: russian
Abstract: 

Investigations of link between parameters of global electromagnetic (Schumann) resonance and characteristics of vertical profile of atmospheric conductivity remain an actual problem. We use a rigorous solution of the electrodynamic problem in the spherical Earth-ionosphere cavity by the full wave technique and compare the results with the knee model, as introduced in the literature. The vertical conductivity profile of the atmosphere was constructed by using parameters of this model, and this allowed us to build the rigorous electromagnetic solution, and to compute the energy spectra of the vertical and horizontal electric magnetic fields corresponding to the uniform distribution of the global thunderstorms over the planet. It is shown that the knee model, discussed in the literature, does not match the rigorous full wave solution and the subsequent computations of the power spectra of Schumann resonance.

Keywords: schumann resonance, the conductivity of the atmosphere, the full wave solution, the knee model

Manuscript submitted  01.07.2015 г.
PACS     93.85.Pq, 94.20.ws, 94.20.Cf
Radiofiz. elektron. 2015, 20(3): 22-29
Full text  (PDF)

References: 
  1. Bliokh, P. V., Nickolaenko, A. P. and Filippov, Yu. F., 1980. Schumann resonances in the Earth-ionosphere cavity. New York: Peter Perigrinus.
  2. Hynninen, E. M. and Galuk, Yu. P., 1972. Field of vertical dipole over the spherical Earth with non-uniform along height ionosphere. Problemy difraktsii i rasprostraneniya radiovoln, 11, pp. 109–120 (in Russian).
  3. Bliokh, P. V., Galiuk, Iu. P., Giunninen, E. M., Nikolaenko, A. P., Rabinovich, L. M., 1977. On the resonance phenomena in the Earth-ionosphere cavity. Izv. Vyssh. Uchebn. Zaved. Radiofiz., 20(4), pp. 501–509. DOI: 10.1007/BF01033918 (in Russian).DOI: https://doi.org/10.1007/BF01033918
  4. Galuk, Yu. P. and Ivanov, V. I., 1978. Deducing the propagation charactericics of VLF fields in the cavity Earth–non-uinform along the height anisotropic ionosphere. Problemy difraktsii i rasprostraneniya radiovoln, 16, pp. 148–153 (in Russian).
  5. Galuk, Yu. P., Nickolaenko, A. P., and Hayakawa, M., 2015. Comparison of exact and approximate solutions of the Schumann resonance problem for the knee conductivity profile. Radiofizika i elektronika, 6(20)(2), pp. 40–46 (in Russian).
  6. Nickolaenko, A. P. and Hayakawa, M., 2002. Resonances in the Earth-ionosphere cavity. Dordrecht-Boston-L.: Kluwer Academic Publ.
  7. Nickolaenko, A. and Hayakawa, M., 2014. Schumann resonance for tyros (Essentials of Global Electromagnetic Resonance in the Earth–Ionosphere Cavity). Tokyo-Heidelberg-N. Y.-Dordrecht-L.: Springer, 2014. Ser. XI. Springer Geophysics.
  8. Ishaq, M. and Jones, D. Ll., 1977. Method of obtaining radiowave propagation parameters for the Earth–ionosphere duct at ELF. Electron. Lett., 13(2), pp. 254–255.DOI: https://doi.org/10.1049/el:19770184
  9. Nickolaenko, A. P, Hayakawa, M., Ogawa, T. and Komatsu, M., 2008. Q-bursts: A comparison of experimental and computed ELF waveforms. Radio Sci., 43(4), pp. RS4014 (9 p.).
  10. Greifinger, C. and Greifinger, P., 1978. Approximate method for determining ELF eigenvalues in the Earth-ionopshere waveguide. Radio Sci., 13(5), pp. 831-837.DOI: https://doi.org/10.1029/RS013i005p00831
  11. Nickolaenko, A. P. and Rabinowicz, L. M., 1982. On a possibility of global electromagnetic resonances at the planets of Solar system. Kosmicheskie issledovaniya, 20(1), pp. 82–89 (in Russian).
  12. Nickolaenko, A. P. and Rabinowicz, L. M., 1987. On applicability of ELF global resonances for studing thunderstorm activity at Venus. Kosmicheskie issledovaniya, 25(2), pp. 301–306 (in Russian).
  13. Sentman, D. D., 1990. Approximate Schumann resonance parameters for a two-scale-height ionosphere. J. Atmos. Terr. Phys., 52(1), pp. 35–46.DOI: https://doi.org/10.1016/0021-9169(90)90113-2
  14. Sentman, D. D., 1995. Schumann Resonances. In: Handbook of Atmospheric Electrodynamics. Vol. 1. L.-Tokyo: CRC Press, Boca Raton, pp. 267−298.
  15. Füllekrug, M., 2000. Dispersion relation for spherical electromagnetic resonances in the atmosphere. Phys. Lett. A. 275(1–2), pp. 80–89.DOI: https://doi.org/10.1016/S0375-9601(00)00549-1
  16. Jones, D. Ll. and Knott, M., 2003. Computations of electromagnetic resonance in the Earth–ionosphere cavity by the full wave solution and the approximate model. In: V. M. Yakovenko, ed. 2003. Radio Physics and Electronics. Kharkov: IRE NAS of Ukraine Publ. 8(1), pp. 55–66 (in Russian).
  17. Mushtak, V. C. and Williams, E., 2002. Propagation parameters for uniform models of the Earth-ionosphere waveguide. J. Atmos. Solar-Terr. Phys., 64(6), pp. 1989–2001.DOI: https://doi.org/10.1016/S1364-6826(02)00222-5
  18. Greifinger, P. S., Mushtak, V. C. and Williams, E. R., 2007. On modeling the lower characteristic ELF altitude from aeronomical data. Radio Sci., 42(2), pp. RS2S12 (12 р.).
  19. Pechony, O. and Price, C., (2004), Schumann resonance parameters calculated with a partially uniform knee model on Earth, Venus, Mars, and Titan, Radio Sci. 39(5):RS5007 (10 р.).
  20. Yang, H. and Pasko, V. P., 2005. Three-dimensional finite-difference time domain modeling of the Earth-ionosphere cavity resonances. Geophys. Res. Lett., 32(3), pp. L03114 (4 p.).
  21. Morente, J. A., Molina-Cuberos, G. J., Portí, J. A., Besser, B. P., Salinas, A., Schwingenschuch, K. and Lichtenegger H., 2003. A numerical simulation of Earth’s electromagnetic cavity with the Transmission Line Matrix method: Schumann resonances. J. Geophys. Res., 108(A5), pp. SIA 17(11 p.).
  22. Toledo-Redondo, S., Salinas, A., Morente-Molinera, J. A., Méndez, A., Fornieles, J., Portí, J. and Morente, J. A., 2013. Parallel 3D-TLM algorithm for simulation of the Earth-ionosphere cavity. J. Comput. Phys., 236(3), pp. 367–379.DOI: https://doi.org/10.1016/j.jcp.2012.10.047
  23. Zhou, H., Yu, H., Cao, B., Qiao, X., 2013. Diurnal and seasonal variations in the Schumann resonance parameters observed at Chinese observatories. J. Atmos. Solar-Terr. Phys., 98(1), pp. 86–96.DOI: https://doi.org/10.1016/j.jastp.2013.03.021
  24. Cole, R. K. and Pierce, E. T., 1965. Electrification in the Earth’s atmosphere from altitudes between 0 and 100 kilometers, J. Geophys. Res., 70(11), pp. 2735-2749.DOI: https://doi.org/10.1029/JZ070i012p02735
  25. Makino, M. and Ogawa, T., 1984. Response of atmospheric electric field and air-earth current to variations of conductivity profiles. J. Atmos. Solar-Terr. Phys., 46(5), pp. 431–435.DOI: https://doi.org/10.1016/0021-9169(84)90087-4
  26. Ogawa, T., 1985. Fair Weather Field Electricity. J. Geophys. Res., 90(4D), pp. 5951–5961 DOI: https://doi.org/10.1029/JD090iD04p05951
  27. Rycroft, M. J., Odzimek, A., Arnold, N. F., Füllekrug, M., Kułak, A., Neubert T., 2007. New model simulations of the global atmospheric electric circuit driven by thunderstorms and electrified shower clouds: The roles of lightning and sprites. J. Atmos. Solar-Terr. Phys., 69(17–18), pp. 2485–2509.DOI: https://doi.org/10.1016/j.jastp.2007.09.004
  28. Rycroft, M. J., Nicoll, K. A., Aplin, K. L. and Harrison, R. G., 2012. Recent advances in global electric circuit coupling between the space environment and the troposphere. J. Atmos. Solar-Terr. Phys., 90-91, pp. 198–211.DOI: https://doi.org/10.1016/j.jastp.2012.03.015