• Українська
  • English
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)

TEMPERATURE DEPENDENT MICROWAVE PROPERTIES OF Fe3O4 NANOPARTICLES SYHTHEZED BY VARIOUS TECHNIQUES

Vakula, AS
Organization: 

O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine
12, Proskura st., Kharkov, 61085, Ukraine
E-mail: warep12@mail.ru

https://doi.org/10.15407/rej2015.03.062
Language: russian
Abstract: 

Magnetic nanoparticles are used extensively in various areas of science and technology due to ability to vary their parameters over a wide range. Magnetic properties of the nanoparticles depend strongly on technique of synthesis. The impact of various techniques of synthesis on the magnetic properties of the nanoparticle is not studied well now. Therefore, in this paper the microwave magnetic properties of the Fe3O4 nanoparticles prepared by various techniques of chemical synthesis are under research. The magnetic properties are studied by the ferromagnetic resonance technique at T = 77…300 K. It is shown that the resonant frequency increases when the diameter of nanoparticle rises. The diameter depends in turn on the technique of synthesis. Also it is shown that when the temperature increases the resonant frequency and linewidth are decreased. The results of investigation can be used to select an optimal technique of synthesis of Fe3O4 nanoparticles with specified magnetic properties.

Keywords: ferromagnetic resonance, low temperatures, magnetic nanoparticles

Manuscript submitted 20.07.2015 г.
PACS     76.50.+g
Radiofiz. elektron. 2015, 20(3): 62-65
Full text  (PDF)

References: 
  1. Andrievsky, R. A. and Ragula, A. V., 2005. Nanostructure materials. Moscow: Akademiya Publ. (in Russian).
  2. Gubin, S. P., Koksharov, Yu. A., Khomutov, G. B., Yurkov, G. Yu., 2005. Magnetic nanoparticles: synthesis method, structure and properties. Usp. Khim., 74(6), pp. 539–574 (in Russian)..DOI: https://doi.org/10.1070/RC2005v074n06ABEH000897
  3. Mskhakov, O. L. and Krikunenko, R. I., 2002. Magnetic nos and magnetic suspensions. Book of lectures. Kazan’: Kazan’ State Technology University Publ. (in Russian).
  4. Girich, A. A., Miliaiev, M. A., Nedukh, S. B., Shuba, A. and Tarapov, S. I., 2014. A Planar Photonic Crystal-Based Resonance Cell for Ferromagnetic Resonance Spectrometer. Telecommunications and Radio Engineering, 73(8), pp. 549–555..DOI: https://doi.org/10.1615/TelecomRadEng.v73.i8.80
  5. Vonsovsky, S. V., 1971. Magnetism. Moscow: Nauka Publ. (in Russian).
  6. Gurevich, A. G., 1994. Magnetic oscillations and waves. Moscow: Fizmatlit Publ. (in Russian).
  7. Tannous, C., Ghaddar, A. and Gieraltowski, J., 2013. Temperature dependent anisotropy and elastic effects in ferromagnetic nanowire arrays. arXiv.org > cond-mat > arXiv: 1104.5348v2.
  8. Gazeau, F., Bacri, J., Gendron, F., Perzynski, R., Raikher, Y., Stepanov, V., Dubois, E., 1998. Magnetic resonance of ferrite nanoparticles: Evidence of surface effects. J. Magn. Magn. Mater., 186(1–2), pp. 175–187. .DOI: https://doi.org/10.1016/S0304-8853(98)00080-8
  9. Kalmykova, T. V., Nedukh, S. V., Polevoy, S. Yu., Kharchenko, A. A., Tarapov, S. I., Belozorov, D. P., Pogorelyy, A. N., Polek, T. I., Pashchenko, V. A., Bludov, A. H., 2015. Magnetic resonance properties of manganite La1–xSrxMnO3 (х = 0.15; 0.225; 0.3; 0.45; 0.6). Fiz. Nizk. Temp., 41(4), pp. 355–362 (in Russian).
  10. Nayden, E. P., Zhuravlev, V. A., Itin, V. I., Terekhova, O. G., Magaeva, A. A., Ivanov, Yu. F., 2008. Magnetic properties and parameters of the oxide ferrimagnetic nanopowder structure produced by the mechanochemical synthesis method from the salt systems. Fiz. Tverd. Tela, 50(5), pp. 857–863 (in Russian).
  11. Najden, E. P., Zhuravlyov, V. A. and Politov, M. V., 2003. Magnetic properties of hexaferrite nanopowders. Vestnik Tomskogo Universiteta. 278, pp. 70–72 (in Russian).