• Українська
  • English
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)

Clinotronic effect application in vacuum sources of terahertz electromagnetic oscillations (To the 100th anniversary of G. Ya. Levin, the inventor of the O-type BWT-clinotron)

Yeryomka, VD, Pishko, OF
Organization: 

O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine
12, Proskura st., Kharkov, 61085, Ukraine
E-mail:
v.yeryomka@gmail.com
 

Institute of Radio Astronomy of the National Academy of Sciences of Ukraine
4, Mystetstv St., Kharkiv, 61002, Ukraine
E-mail:
pishko@rian.kharkov.ua

https://doi.org/10.15407/rej2018.03.009
Language: Russian
Abstract: 

 

Subject and purpose. In the vacuum microwave electronics, with increasing the operating frequency of the source electromagnetic oscillations, most attention is paid to increasing the efficiency of electron-wave interaction on the Vavilov-Cherenkov effect of rectilinear electronic flows with a slow spatial harmonic of electromagnetic waves in metallic periodic slowing structures (PSS). At the same time, isufficient attention was paid to the study of the effect of the coefficient of the use of rectilinear electronic flows on the frequency energy Cherenkov oscillators and amplifiers of electromagnetic oscillations. Clinotron effect, reveated in 1956 in the process of development and research of O-type backward wave tubs (O-type BWT) of short-wave ranges Institute for Radiophysics and Electronics of Academy of Sciences of the Ukrainian SSR, demonstrated a significant influence of the utilization factor of a spatially developed rectilinear electronic flows on the frequency-energy characteristics of the O-type BWT.

Methods and methodology. There is no publication in the scientific literature that summarizes the results of research into the frequency-energy characteristics of vacuum sources of terahertz (THz) electromagnetic oscillations with spatially developed electron currents, created during the last 50 years and differing in the principle of action, by theoretical and experimental methods of influence of the clinotronic effect on the frequency-energy characteristics.

Results. The analysis of the frequency-energy characteristics of THz BWT-clinotrons, THz-clinoorotrons, 
THz-gyroclinotrons, THz-clinoorbictrons was carriedout. Based on the analysis of the results of the research, there is a conclusion about the existence of a close relationship between the value of the coefficient of the use of spatially-developed electron flows and frequency-energy and also the mass-size characteristics of vacuum sources of THz electromagnetic oscillations.

Сonclusions. The use of the clinotronic effect in vacuum sources of electromagnetic oscillations with spatially developed electron currents contributes to the creation of compact generators and signal amplifiers in the "THz slit" of the spectrum of electromagnetic oscillations.

Keywords: backward –wave tube, clinoorotron, clinotron, clinotronic effect, clynoorbictron, gyroclinotron, spatially-developed electron flow, terahertz range

Manuscript submitted  13.02.2017
PACS 84.4.0. Fe
Radiofiz. elektron. 2018, 23(3): 9-39
Full text  (PDF)

References: 
  1. Koch, М., 2006. Terahertz technology: Quo vadis? Photonik Int., pp. 14–17.
  2. Tonouchi, M., 2006. Terahertz Technology. Tokyo: Ohmsha.
  3. Woolard, D., Kaul, R., Suenram, R., Walker, A. H., Globus, T., gSamuels, A., 1999. Terahertz electronics for chemical and biological warfare agent detection. In: 1999 IEEE MTT-S Int. Microwave Symp. Digest (Cat. No.99CH36282). Anaheim, CA, USA, 13–19 June 1999. Vol. 3. P. 925–928. 
  4. Clunie, D., Mesyats, G., Osipov, M. I., Petelin, M. I., Zagulov, P., Korovin, S. D., Clutterbuck, C. F., Wardrop, B., 1999. The design, construction, kid testing of an experimental high power, short-pulse radar. Strong Microwaves in Plasmas: Proc. Int. Workshop. Nizhny Novgorod, 2–9 Aug. 1999, Vol. 2, pp. 886–902. Nizhni Novgorod: IAP RAS.
  5. Booske, J. H., 2008. Plasma physics and related challenges of millimeter-wave- to-terahertz and high power microwave generation. Phys. Plasmas, 15(5), pp. 055502 (16 p.). DOI:https://doi.org/10.1063/1.2838240
  6. Bykov, Yu. V., Ginzburg, N. S., Glyavin, M. Yu., Golubev, S. V., Denisov, G. G., Luchinin, A. G., Manuilov, V. N., 2014. The development of gyrotrons and their applications for plasma science and material processing. Terahertz Science and Technology, 7(2), pp. 70–79. 
  7. Manley, J. M., Rowe, H. F., 1959. General energy relations in nonlinear reactances. Proc. IRE, 47(12), pp. 2115–2116.
  8. Altshuler, Yu. G., Таtаrеnkо, A. S., 1963. Backward wave tubes with low power. Мoscow: Sovetskoe Radio Publ. (in Russian).
  9. Тrubetskov, D. I., 1986. Introduction to microwave electronics. History and initial information. Lecture on microwave electronics and radiophysics. 7th winter school-workshop of engineers. Book 3. Saratov University Publ. (in Russian).
  10. Kompfner, R., 1953. Backward-wave oscillator. Bell Lab. Rec., 31(8), pp. 281–285.
  11. Kompfner, R., Williams, N. T., 1953. Backward-wave tubes. Proc. IRE, 41(11), pp.1602–I611. DOI:https://doi.org/10.1109/JRPROC.1953.274186
  12. Stel’makh, М. F., 1953. To the theory of a binary block of slot resonators. Radiotekhnika, 8, pp. 30–37 (in Russian).
  13. Stel’makh, М. F., 1957. Оn the interaction of the electron beam with the field of spatial harmonics. Radiotekhnika i elektronika, 2(4), pp. 461–469 (in Russian).
  14. Guénard, P. R., Doehler, O., Epsztein, R., Warnecke, B., 1952. Nouveau Tubes Oscillateurs à Large Bande
    d'accord onique pour Hyperfrequences. Comptes Rendus Acad. Sci., 235, pp. 236–238.
  15. Gerschenzon, Е. М., Golant, М. B., Negirev, А. А., Savel’ev, V. S., Dеvyatkov, N. D. ed., 1985. Backward Wave Tubes of Millimeter and Submillimetr Wave Bands. Мoscow: Radio i svyaz' Publ. (in Russian).
  16. Negirev, А. А., Fedorov, А. S., 1999. Wide-band small-size backward wave tubes of millimeter range. Radioengineering, 4, pp. 41–43 (in Russian).
  17. Ives, L., Kory,C., Read, M., Neilson, J., Caplan, M., Chubun, N., Wilson, R., Robinson, T., 2004. Development of Terahertz Backward Wave Oscillators. In: 5th IEEE Int. Vacuum Electronics Conf. (IEEE Cat. No.04EX786). Digest. Monterey, CA, USA, 27–29 Apr. 2004, pp. 67–68. DOI:https://doi.org/10.1109/IVELEC.2004.1316201
  18. Dayton, J. A. Jr., Mearini, G. T., Kory, C. L., 2004. Diamond Based Submillimeter Backward Wave Oscillator. Ibid. p. 71–72. DOI:https://doi.org/10.1109/IVELEC.2004.1316203
  19. Barnet, L. R., Stankiewicz, N., Dayton, J. A. Jr., 2004. Submillimeter Backward-Wave Oscillator. IEEE Int. Electron Devices Meeting. San Francisco, CA. TechnicalDigest. 1990. P. 341–342.
  20. Walker, L. R., 1953. Starting current in the backward-wave oscillator. J. Appl. Phys., 24(7), pp. 854–859. DOI:https://doi.org/10.1063/1.1721394
  21. Levin, G. Ya., 1956. Backward Wave Tube. USSR Authors' Certificate 341,113 (in Russian).
  22. Karp, A., 1957. Backward-Wave Oscillator Experiments at 100 to 200 Kilomegacycles. Proc. IRE, 45(4), pp. 496–503. DOI: 10. 1109/JRPOC, 1957.278439
  23. Usikov, А. Ya, Kaner, E. A., Truten’, I. D., Levin, G. Ya., Zinchenko, N. S., Dzyubenko, M. I., Korniyenko, Yu. V., Nestrizhenko, Yu. A., Kuleshov, Ye. M., Bass, F. G., Yakovenko, V. M., Ganapol'sky, Ye. M., Korolyuk, A. P., Peskovatsky, S. A., Schamfarov, Ya. L., Usikov, A. Ya. ed., 1986. Electronics and radiophysics of millimeter and submillimeter radio waves. Kyiv: Naukova Dumka Publ. (in Russian).
  24. Levin, G. Ya., Borodkin, A. I., Кirichenko, А. Ya., Usikov, A. Ya. ed., Churilova, S. А., 1992. Klinotron. Kyiv: Naukova Dumka Publ. (in Russian).
  25. Kirichenko, A. Ya., Yakovenko, V. M., 2007. Klinotron – 50. In: V. M. Yakovenko, ed. 2007. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ. 12(Spec. Iss.), pp. 5–13 (in Russian).
  26. Yeryomka, V. D., Belukha, А. Ya., Kirichenko, L. A., 2003. Low-resonance mm and submm-wave BWO-clinotron. In: 13th Int. Crimean Conf. Microwave and Telecommunication Technology (CriMiCo'2003). Sevastopol, Crimea, Ukraine, 8–12 Sept. 2003. Weber Publ., pp. 255–256.
  27. Yeryomka, V. D., Kirichenko, A. Ya., Solodovnik, V. A., 1977. Study the possibility of current – free frequency control O-type BWO-klinotrons. In: V. P. Shestopalov, ed. 1977. Proc. of the Institute for Radiophysics and Electronics AS of Ukrainian SSR, 23, pp. 60–79 (in Russian).
  28. Yeryomka, V. D., Kirichenko, A. Ya., Solodovnik, V. A., 1976. Backward wave tube. USSR Autors' Certificate 555,751 (in Russian).
  29. Kоvschov, Yu. S., Ivanov, А. I., Kisko, S. А., Ponomarenko, S. S., Kuleshov, А. N., Efimov, B. P., 2013. Stabilization of the electromagnetic oscillation frequency in the BWO-oscillators of the submillimeter range. Vestnik of Kharkiv National University named after V. N. Karazin, 1094, Radiofizika i Elektronika, 23, pp. 77–83 (in Russian).
  30. Balaklitskiy, I. М., Maystrenko, Yu. V., Мytsenko, I. М., 1979. Device oscillator frequency stabilizer. USSR Autors' Certificate 892,741 (in Russian).
  31. Мytsenko, I. М., Royenko, А. N., Chernyavsky, I. Yu., 2002. Device for stabilizing the frequency of the microwave oscillator. Collection of Scientific Works of Kharkiv Military University, 3(41), pp. 108–109 (in Russian).
  32. Yeryomka, V. D., Мytsenko, I. М., 2015. The way current-less tuning and stabilization of the frequency teraherz – type clinotron self-oscillation. In: 25th Int. Crimean Conf. “Microwave & Telecommunication Technology” (CriMiCo'2015). Conf. Proc. Sevastopol, Crimea, 6–12 Sept. 2015, Vol. 1, pp. 171–175. Weber Publ. (in Russian).
  33. Bezgina, I. P., Yeryomka, V. D., Маkulina, Т. А., Мytsenko, I. М., 2015. Current-less tuning and control of self-oscillations frequency terahertz range klynotron. Izv. Vyssh. Uchebn. Zaved. Applied Nonlinear Dynamics, 23(6), pp. 47–59 (in Russian). DOI:https://doi.org/10.18500/0869-6632-2015-23-6-47-59
  34. Yeryomka, D. V., Yeryomka, V. D., Kuz’michev, I. K., Mytsenko, I. M., 2016. Physical techniques of stabilizing the frequency of self-oscillation klinotrons terahertz range with using an output fluctuations. In: Int. Conf. Information and Communication Technologies and Radiotronics (UkrMiCo’2016). Kyiv, Ukraine. 10–14 Sept. 2016. US IEEE Xplore Digital Library.
  35. Levin, G. Ya., Churilova, S. А., Chumak, V. G., 1999. On the issue of reducing the effect of ionic bombardment of the cathode on the performance of microwave vacuum tubes. In: V. M. Yakovenko, ed. 1999. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ. 4(3), pp. 125–127 (in Russian).
  36. Levin, G. Ya., Churilova, S. А., 1991. The Electron Gun. RU Pat. 2028687 (in Russian).
  37. Chumak, V. G., Churilova, S. А., 2002. Electron Gun for Millimeter and Submillimeter-Wave Clinotrons. Radio phys. radio astron., 7(2), pp. 175–179 (in Russian).
  38. Lysenko, Е. Е., Pishko, О. F., Chumak, V. G., Churilova, S. А., 2004. The Status of the Developments of Continuous Clinotrons. Achievements of Modern Radioelectronics, 8, pp. 3–12 (in Russian).
  39. Pishko, O. F., Churilova, S. А., 2004. Моdelation of the Interaction Space of Millimeter and Submillimeter Clinotrons. Achievements of Modern Radioelectronics, 1, pp. 10–19 (in Russian).
  40. Buzik, L. M., Pishko, O. F., 1996. Exitation of an Open Multistage Slowing System of the Comb-Type by a Waveguide. Radiotekhnika i elektronika, 41(4), pp. 433–440 (in Russian).
  41. Buzik, L. M., Pishko, O. F., Churilova, S. А., 1997. Directional patterns of a waveguide exciting a open multi-step slow-wave system. In: Proc. of the 2nd Int. Conf. Antenna Theory and Techniques (ICATT). Kyiv, Ukraine, 20–22 May 1997.
  42. Lysenko, Е. Е., Pishko, О. F., Chumak, V. G., Churilova, S. А., 1999. Experimental Research of Clinotron with Distributed Quasioptical Power Output.
    Radio phys. radio astron., 4(1), pp. 13–19 (in Russian).
  43. Lysenko, Е. Е., Pishko, О. F., Chumak, V. G., Churilova, S. А., 2009. Experimental Investigation of a Submillimeter Clinotron. Electromagnetic Waves and Electronic Systems, 14(2), pp. 72–80 (in Russian).
  44. Lysenko, Е. Е., Pishko, О. F., Chumak, V. G., Churilova, S. А., 2001. Resonance Line Q-Factor of Millimeter-Wave Clinotrons. Radio phys. radio astron., 6(4), pp. 317–322 (in Russian).
  45. Vavriv, D. М., 2007. Theory of the Clinotron. In: V. M. Yakovenko, ed. 2007. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ. 12(Spec. Iss.), pp. 35–47 (in Russian).
  46. Мil’cho, М. V., Еphimov, B. P., Zavertanyi, V. V., Goncharov, V. V., 2005. Distinctions operation conditions of type-clinotron oscillators. In: V. M. Yakovenko, ed. 2005. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ. 10(3), pp. 435–440 (in Russian).
  47. Yeryomka, V. D, Kirichenko, A. Ya., Solodovnik, V. A., 1977. Оn Excitation of the Comb Cone by an Electron Beam. Izv. Vyssh. Uchebn. Zaved. Radiophysics and Quantum Electronics, 20(10), pp. 1580–1582 (in Russian).
  48. Мi’lcho, M. V., 2007. Electron Interaction with Transverse and Longitudinel components of the High Frequency Field in Klinotron Type Oscillator. In: V. M. Yakovenko, ed. 2007. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ. 12(Spec. Iss.), pp. 59–70 (in Russian).
  49. Yeryomka, V. D., 2013. Terahertz vacuum electromagnetic radiation sources: evolution zigzag from klynotron to klynoorbictron. Izv. Vyssh. Uchebn. Zaved. Applied Nonlinear Dynamics, 21(1), pp. 7–34 (in Russian). DOI: https://doi.org/10.18500/0869-6632-2013-21-1-7-34
  50. Аndrusckevich, V. S., Gamayunov, Yu. G., Patru-sheva, Е. V., 2010. A nonlinear clinotron theory. J. Commun. Technol. El., 55(3), pp. 330–336.
  51. Andrusckevich, V. S., Gamayunov, Yu. G., Patru-sheva, Е. V., 2011. A nonstationary theory of the clinotron. J. Commun. Technol. El., 56(4), pp. 458–464.
  52. Sattorov, M., Khutoryan, Е., Lukin, K., Kwon, O. and Park, G. S., 2013. Improved efficiency of backward - wave oscillator with an inclined electron beam. IEEE Electron Devices, 60(1), pp. 458–463. DOI:10.1109/ TED.2012.2225837
  53. Khutoryan, E., Sattorov, M., Lukin, K., Oh-Joon Kwon, Sun-Hong Min, Ranajoy Bhattacharya, In-Keun Baek, Seontae Kim, Minwoo Yi, Joonho So, Gun-Sik Park, 2015. Theory of Multimode Resonant Backward – Wave Oscillator with an Inclined Electron Beam. IEEE Electron Devices, 62(5), pp. 1628–1634. DOI: 10.1109/ TED.2015.2411680
  54. Gamayunov, Y. G., Patrusheva, E. V., Tolstikov, A. V., 2015. Clinotron in the amplification mode. J. Commun. Technol. El., 60(7), pp. 789–795. DOI:10.7868/ S0033849415060078
  55. Odarenko, Ye. N. Shmat’ko, A. A., 1992. Self-excitation of oscillators in O-type resonant oscillation with a long-term interaction with an inclined magnetostatical field. Radiotekhnika i elektronika, 37(2), pp. 303–310 (in Russian).
  56. Shmat’ko, A. A., 2008. Electron-wave systems of millimeter range. Vol. 1. Kharkiv: V. N. Karazin KhNU Publ., pp. 335–456 (in Russian).
  57. Таranenko, Z. I., Trokhimenko, Ya. K., 1965. Slow-Wave Structures. Kyiv: Теkhnika Publ. (in Russian).
  58. Silin, R. А., Sazonov, V. P., 1966. Slow-Wave Structures. Мoscow: Sov. Radio Publ. (in Russian).
  59. Yeryomka, V. D., Kurayev, А. А., Matveyenko, V. V., 2018. The absence of the “defect” efficiency in the clinotrons. Doklady BGUIR, 111(1), pp. 103–104 (in Russian).
  60. Kаpitonov, V. Е., 1988. Optimization of Magnetic Focusing Systems by Synthesis Method. In: Electronics millimeter and submillimeter ranges. Kyiv: Naukova Dumka Publ., pp. 172–178 (in Russian).
  61. Djubua, B. Ch., Korolev, A. N., 2011. Modern effective cathodes (To the history of their creation in FSUE RPC Istok). Elektronnaya tekhnika. Ser. SVCh-tekhnika, 1(508), pp. 5–24 (in Russian).
  62. Rusin, F. S., Bogomolov, G. D., 1966. Generation of Oscillations in an Open Resonator. Pis’ma Zh. Eksp. Teor. Fiz., 4(6), pp. 236–239 (in Russian).
  63. Mizuno, K., Ono, S., Shibata, Y., 1972. Two different mode interactions in an electron tube with a Fabry–Perot resonator – The Ledatron. IEEE Trans. Electron Devices, 20(8), pp. 749–752. DOI:https://doi.org/10.1109/T-ED.1973.17737
  64. Schestopalov, V. P. ed., Vertiy, A. A., Yermak, G. P., Skrynnik, B. K., Khlopov, G. I., Tsvyk, A. I., 1991. Difraction Radiation Oscillators. Kyiv: Naukova Dumka Publ.
  65. Моrоz, Е. Е., Sоrоkа, А. S., Тrеt’yakov, О. А., Shmat’ko, А. А., 1980. Resonator with Duble Grating as an Oscillation System. Radiotekhnika i elektronika, 25(11), pp. 2292–2300.
  66. Мyasin, Е. А., 2016. Оrotron and your моdifications. In: А. Е. Khramov, А. G. Belanov, V. D. Yeryomka, V. Е. Zаpеvаlоv, А. А. Kоrоnоvskiy (eds.) 2016. Generation and Amplification of Terahertz Range Sygnals. Sаrаtоv: Yu. A. Gagarin SSTU Publ. Ch. 4, pp. 160–194 (in Russian). ISBN 978-5-7433-3013 -3.
  67. Yeryomka, V. D., Kоrnееnkоv, V. K., Skrynnik, B. K., Shestopalov, V. P., 1976. Difraction Radiation Oscillator. USSR Authors’ Certificate 669,963 (in Russian).
  68. Yeryomka, V. D., Kоrnееnkоv, V. K., Shestopa-
    lov, V. P., 1977. Difraction Radiation Oscillator. USSR Authors’ Certificate 644,254 (in Russian).
  69. Yeryomka, V. D., Stadnik, A. V., Shestopalov, V. P., 1980. Difraction Radiation Oscillator. USSR Authorsʼ Certificate 830,946 (in Russian).
  70. Yeryomka, V. D., Kravchenko, V. F., Kurayev, A. A., Pustovoit, V. I., Sinitsyn, A. K., 2000. Аtomic Functions. In the Optimization Problem for the Efficiency of a Two - Beam Oorotron with an Irregular Binary Comb. Zarubezhnaya Radioelektronika. Usp. Sovremennoy Radioelektroniki, 3, pp. 58–62 (in Russian).
  71. Gulyaev, Yu. V., Kurayev, A. A., Nefedov, E. I., 1981. To the Problem of Optimizing a Coaxial Orotron. Dok. Akad. Nauk USSR, 257(2), pp. 349–352 (in Russian).
  72. Yeryomka, V. D., Kurayev, A. A., Sinitsyn, A. K., 2008. Kоаxial orotron. Ukraine. Pat. 89882 (in Ukrainian).
  73. Kurayev, A. A., Sinitsyn, A. K., Rak, O. A., Yeryomka, V. D., 2010. Terahertz range coaxial klinoorotron oscillator. In: Proc. 7th Int. Kharkіv Symp. Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW'2010). Kharkov, Ukraine, 21–26 June 2010. IEEE, pp. 1–3.
  74. Kurayev, A. A., Sinitsyn, A. K., Rak, A. O., Yeryomka, V. D., 2010. Efficiency of coaxial klinoorotron. In: 20th Int. Crimean Conf. Microwave and Telecommunication Technology (CriMiCo'2010). Sevastopol, Crimea, Ukraine, 8–12 Sept. 2003. IEEE Publ., pp. 259–260. DOI::https://doi.org/10.1109/CRMICO.2010.5632596
  75. Yeryomka, V. D., Kurayev, A. A., Sinitsyn, A. K., 2008. Оptimization of Phase Wave Velocity in a Millimeter Wave Inclined Flow Orotron. In: V. M. Yakovenko, ed. 2008. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ. 13(4), pp. 383–393 (in Russian).
  76. Маkhаlоv, P. B., Fedotov, А. E., 2008. Тheory of orotron with inclined electron beam. Electromagnetic Waves and Electron Systems, 13(7), pp. 51–56 (in Russian).
  77. Fedotov, A. E., 2008. A Theory of the Orotron with an Inclined Electron Beam. Int. J. Infrared Millimeter Waves, 29(11), pp. 997–1003.
  78. Yeryomka, V. D., Kirichenko, А. Ya., Pospelov. L. А., 1969. Klinotron – multiplier millimeter and submillimeter wavelengths bands. USSR Authors’ Certifi-
    cate 50,354 (in Russian).
  79. Мil’chо, M. V., 2015. Electron bunching in the clinotron-type oscillators. "Klinotron" as a frequency multiplier. Radiofiz. Elektron., 6(20)(2), pp. 54–60 (in Russian). DOI:https://doi.org/10.15407/rej2015.02.054
  80. Yeryomka, V. D., Kirichenko, А. Ya., Pospelov, L. А., 1969. Klinoorotron – frequency multiplier millimeter and submillimeter wavelengths bands. USSR Authors’ Certificate 59,810 (in Russian).
  81. Yeryomka, V. D., 2007. Frequency multipliers with inclined electron flow. In: V. M. Yakovenko, ed. 2007. Radiofizika i electronica. Kharkov: IRE NAS of Ukraine Publ. 12(Spec. Iss.), pp. 81–103 (in Russian).
  82. Yeryomka, V. D., 2007. Frequency multipliers with inclined electron flow. In: 2007 17th Int. Crimean Conf. Microwave & Telecommunication Technology (CriMiCo'2007). Sevastopol, Crimea, Ukraine, 10–14 Sept. Sevastopol: Weber Publ. Vol. 1, pp. 151–162 (in Russian).
  83. Tsvyk, А. I., Nesterenko, А. V., Zheltov, V. N., Khutoryan, E. М., 2001. DRO with Inclined of Focusing Magnetostatic Field. In: 2001 11th Int. Conf. Microwave & Telecommunication Technology (CriMiCo 2001): conf. proc. Sevastopol, Crimea, Ukraine, 10–14 Sept. 2001. Sevastopol: Weber Publ., pp. 193–194 (in Russian).
  84. Kurayev, А. А., 1969. МCR – monotron with wide electron flow and inclined magnetic field relatively resonator axis. Radiotekhnika i elektronika, 14(9), pp. 1614–1622 (in Russian).
  85. Kurayev, A. A., Sinitsyn, A. K., 2004. Gyroklinotron’s Efficiency. In: 5th IEEE Int. Vacuum Electronics Conf. (IEEE Cat. No.04EX786). Digest. Monterey, CA, USA, 27–29 Apr. 2004, pp. 190–191. 
  86. Kurayev, А. А., Sinitsyn, A. K., 2004. Prospects for Increasing the Power of Short-Wave Gyrotrons. Radiotekhnika, 9, pp. 48–53 (in Russian).
  87. Yeryomka, V. D., 2013. Orbictron. Ukraine Pаt. 107,057 (in Ukrainian).
  88. Yeryomka, V. D., Kurayev, А. А., Sinitsyn, A. K., 2013. Оrbictron – oscillator: model and simulation results in range 180 GHz. Radiofiz. Elektron., 4(18)(4), pp. 63–72 (in Russian).
  89. Yeryomka, V. D., 2013. Orbictron of Yeryomky. Ukraine Pаt. 108,178 (in Ukrainian).
  90. Gurevich, А. V., Yeryomka, V. D., Kurayev, А. А., Kravchenko, V. F., Sinitsyn, A. K., 2007. Two-stage orbotron – amplifier and frequency multiplier. Usp. sovremennoi radioelektroniki, 10, pp. 64–69 (in Russian).
  91. Yeryomka, V. D., Kurayev, А. А., Sinitsyn, A. K., 2012. Simulation of 180 GHz Orbictron amplifier. In: 22nd Int. Crimean Conf. «Microwave & Tele-communication Technology» (CriMiCo'2012). Conf. Proc. Sevastopol, Crimea, Ukraine, 10–14 Sept. 2012. Sevastopol: Weber Publ. Vol. 1, pp. 197–198.
  92. Yeryomka V. D., Kurayev A. A., Sinitsyn A. K., 2013.
    0.18-THz orbictron-amplifier. 8th Int. Kharkov Symp. on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW'2013): Proc. (Kharkov, 23–28 June 2013). Kharkov, Ukraine. P. 147–148. DOI:https://doi.org/10.1109/MSMW.2013.6622196
  93. Yeryomka, V. D., Kurayev, А. А., Sinitsyn, A. K., 2013. Optimized variants of 0.18 THz Klinoorbictron-Amplifier. In: 14th IEEE Int. Vacuum Electronics Conf. (IVEC'2013): conf. dig. Paris, France, 21–23 May 2013.
  94. Yeryomka, V. D., Gurevich, А. V., Kurayev, А. А., Sinitsyn, A. K., 2010. Klinoorbictron – terahertz range oscillator. In: Proc. 7th Int. Kharkіv Symp. Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW'2010). Kharkov, Ukraine, 21–26 June 2010. IEEE, pp. 622–624. 
  95. Happek, U., Severs, A. I., Blum, E. B., 1991. Observation of coherent transition radiation. Phys. Rev. Lett., 67(21), pp. 2962–2965. DOI:https://doi.org/10.1103/ PhysRevLett.67.2962
  96. Lukin, K. A., Yephimov, B. P., Rakityansky, V. А., 1988. Transformation of the Chaotic Oscillations Spectrum by Reflections. Zh. Tekh. Fiz., 58(12), pp. 2398–2400 (in Russian).
  97. Lukin, K. A., Rakityansky, V. A., 1992. Exitation of Intensive Chaotic Oscillations of Millimeter Waveband. In: 2nd URSI Int. Symp. Signals, Systems and Electronics (ISSSE 1992): proc. Paris, France,
    1–4 Sept. 1992, pp. 454–457.
  98. Rakityansky, V. A., Lukin, K. A., 1995. Exitation of chaotic oscillation in millimeter BWO’s. Int. J. Infrared Millimeter Waves, 16(6), pp. 1037–1049.
  99. Lukin, K. A., Rakityansky, V. A., 2001. Sources of Millimeter Noise Oscillation. In: 4th Int. Kharkov Symp. "Physics and Engineering of Millimeter and Submillimeter Waves" (MSMW'2001): symp. proc. Kharkov, Ukraine, 4–9 June 2001. Vol. 2, pp. 322–324.
  100. Lukin, K. A., 1998. Millimeter Wave Noise Radar Technology. 3rd Int. Kharkiv Symp. "Physics and Engineering of Millimeter and Submillimeter Waves" (MSMW’1998): proc. Kharkiv, Ukraine, 15–17 Sept. 1998. Vol. 1, pp. 94–97.
  101. Lukin, K. A., 2002. The Principles of Noise Radar Technology. In: 1st Int. Workshop on the Noise Radar Technology (NPTW'2002): Proc. Yalta, Crimea, Ukraine, 18–20 Sept. 2002, pp. 13–22.