• Українська
  • English
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)

SOLID-STATE COMPONENTS AND DEVICES OF TERAHERTZ ELECTRONIC TECHNOLOGY IN UKRAINE

Karushkin, NF
Organization: 

State Enterprise "Research Institute "Orion"
Ukraine, 03680, Kyiv-57, E. Potie str., 8A

E-mail: orion@ri-orion.kiev.ua

https://doi.org/10.15407/rej2018.03.040
Language: russian
Abstract: 

Subject and purpose. One of the main problems arising in the implementation of the terahertz range is associated with the need to provide the advanced equipment developed in this frequency band with effective electronic components.

Methods and methodology. This paper provides a comparative analysis of the characteristics of the terahertz range components, based on the solid-state elements and waveguide electrodynamic structures.

Results. The features of design solutions in the process of creating semiconductor components and devices, such as oscillators, amplifiers, frequency multipliers, power meters, transmission lines, and devices for modulating electromagnetic waves using pin-structures, are shown. The main directions of the practical application of apparatus and equipment of the terahertz range are considered.

Conclusions. The attractiveness of the terahertz range to create high-speed communication systems, high-resolution radar, radio vision systems, remote identification devices of substances, and other special and civil engineering, is shown. The provided data indicate the potential capabilities of leading Ukrainian enterprises in solving the problems of mastering the terahertz frequency interval.

Keywords: amplifier, detector, oscillator, radio vision, terahertz band, transmission line, р–i–n-modulator

Manuscript submitted  14.12.2017
PACS 84.40; 64.70.kg
Radiofiz. elektron. 2018, 23(3): 40-64
Full text  (PDF)

References: 
  1. IEEE Transactions on Microwave Theory and Technique. 1995. 43(4), Pt. 2. Spec. Iss. Terahertz Technique, pp. 997–1210.
  2. Yeru, I. I., 1997. Terahertz technique and technology: current state, development trends and prospect of practical application. Uspekhi sovremennoy radioelektroniki, 3, pp. 51–79 (in Russian).
  3. Isaev, V. M., Kabanov, I. N., Komarov, V. V., Meshchanov, V. M., 2014. Modern radio-electronic systems of terahertz frequency range. Proceedings of TUSUR journal, 4(34), pp. 5–21 (in Russian).
  4. Karushkin, N. F., 2011. The possibilities of using the terahertz range of radio waves. In: 5th Int. conf. and
    3rd Int. student conf.
    Problems of telecommunications. Proc. Kiev, Ukraine, 19–22 Apr. 2011. Kiev: NTUU KPI, pp. 23–27 (in Russian).
  5. Alaverdyan, S. A., Bokov, S. I., Bulgakov, V. O., Zaitsev, N. A., Isaev, V. M., Kabanov, I. M., Katush-kin, U. U., Komarov, V. V., Krenitskiy, A. P., Mechanov, V. P., Savushkin, S. A., Syromyatnikov, A. V., Yakunin, A. S., 2012. Terahertz frequency range: Electronic component base. Questions of metrological support. Review on electronic engineering. Ser. 1. Microwave electronics. Moscow: Central Research Institute of Electronics Publ. (in Russian).
  6. Pozhidaev, V. N., 2005. The Possible Application of Radiowaves in THZ Range. Radiotekhnika, 5, pp. 5–8 (in Russian).
  7. Kravchuk, S. O., Narytnik, T. N., 2015. Telecommunication systems of the terahertz range. Monograph. Zhytomyr: Private Limited Liability Company "Evenok O.O." (in Ukrainian).
  8. Chattopadhyay, G., 2011. Technology, capability and performance of low power terahertz sources. IEEE Trans. Terahertz Sci. Technol., 1(1). pp. 33–53. DOI: https://doi.org/10.1109/TTHZ.2011.2159561
  9. Schlecht, E., Maiwald, F., Chattopadhyay, G., Martin, S., Mehdi, I., 2001. Design considerations for heavily – doped cryogenic Schottky diode varactor multipliers. In: Proceedings of the 12th Int. Symp. Space Terahertz Technology. San Diego, USA, 14–16 Feb. 2001, pp. 485–494.
  10. Gershenzon, E. M., Golant, M. B., Negirev, A. A., Soveliev, K. S., 1985. Devyatkov, N. D. ed. Backward wave tubes of millimeter and submillimeter wavelength bands. Moscow: Radio i svyaz' Publ. (in Russian).
  11. JSC "RPC "Istok" named after Shokin" Russia. 2003. [online]. Available at: http://www.istokmw.ru/
  12. Lyubchenko, V. E., 2002. Fundamental limitations and prospects for the use of semiconductor devices in millimeter wave radio systems. Radiotekhnika, 2, pp. 16–27 (in Russian).
  13. Aseev, A. L., 2006. Nanotechnology in semiconductor electronics. Vestnik Rossiyskoy akademii nauk, 76(7), pp. 603–611 (in Russian).
  14. Obukhov, I. A., 2005. Some problems of modern nanoelectronics. In: 15th Int. Crimean Conf. Microwave and Telecommunication Technology, CriMiCo'2005. Proc. Sevastopol, Ukraine, 12–16 Sept. 2005, pp. 5–7 (in Russian).
  15. Goncharuk, N. M., Karushkin, N. F., 2009. Nitride-gallium resonance tunnel diode. In: 19th Int. Crimean Conf. Microwave and Telecommunication Technology, CriMiCo'2009. Proc. Sevastopol, Ukraine, 14–18 Sept. 2009, pp. 671–674 (in Russian).
  16. Goncharuk, N. M., Karushkin, N. F., 2014. Resonance-emission diode on a nitride-gallium cathode with a single-layer cathode coating. In: 24th Int. Crimean Conf. Microwave and Telecommunication Technology, CriMiCo'2014. Proc. Sevastopol, Ukraine, 07–13 Sept. 2014, pp. 817–818 (in Russian).
  17. Obukhov, I. A., Smirnova, E. A., 2016. Nanoconductor as an active element of the microwave oscillator. Nano- i mikrosistemnaya tehnika, 18(8), pp. 509–517 (in Russian).
  18. Goncharuk, N. M., Karushkin, N. F., 2012. Millimeter wave nitride-gallium Gunn diode. In: 22nd Int. Crimean Conf. Microwave and Telecommunication Technology, CriMiCo'2012. Proc. Sevastopol, Ukraine, 10–14 Sept. 2012, pp. 161–162.
  19. Dvornichenko, V. P., Karushkin, N. F., Maltsev, S. B., Chaika, V. E., 1985. The operation of IMPATT diode in the mode of radio pulse frequency multiplication. Elektronnaya tekhnika. Ser. 1. SVCh-tekhnika, 4(386), pp. 40–41 (in Russian).
  20. Karushkin, N. F., Obukhov, I. A., Balabanov, V. M., Smirnova, E. A., 2016. Solid-state modules for generating microwave radiation in the frequency range up to 200 GHz. In: 26th Int. Crimean Conf. Microwave and Telecommunication Technology, CriMiCo'2016. Proc. Sevastopol, Crimea, 04–10 Sept. 2016, pp. 289–295 (in Russian).
  21. Karushkin, N. F., Maltsev, S. B., Khitrovsky, V. A., 2016. Solid-state microwave modules for radio engineering equipment and millimeter-wave systems. Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 1, pp. 3–7 (in Russian).
  22. State Enterprise "Research Institute "Orion". Kiev, Ukraine [online]. Available at: http://www.orion.org.ua
  23. Balabanov, V. M., Karushkin, N. F., Obukhov, I. A., Smirnova, E. A., 2017. Sources of microwave power on IMPATT diodes in the short-wave part of the millimeter range. In: 27th Int. Crimean Conf. Microwave and Telecommunication Technology, CriMiCo'2017. Proc. Sevastopol, Crimea, 10–16 Sept. 2017. Vol. 1 (in Russian).
  24. Dvornichenko, V. P., Karushkin, N. F., Malyshko, V. V., Orekhovsky, V. A., 2015. Ka-band semiconductor pulse oscillator with electronic frequency switching. Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 4, pp. 3–7 (in Russian).
  25. Karushkin, N. F., 2010. Using IMPATT ring structures to increase the average pulse power of millimeter wave oscillators. Elektronnaya tekhnika. Ser. 1. SVCh-tekh-nika, 4(507), pp. 46–54 (in Russian).
  26. Kasatkin, L. V., Chayka, V. E., 2006. Semiconductor devices in the millimeter wave range. Sevastopol: Weber Publ. (in Russian).
  27. Karushkin, N. F., 2016. Phase synchronization in high-power pulsed microwave devices. In: 26th Int. Crimean Conf. Microwave and Telecommunication Technology, CriMiCo'2016. Proc. Sevastopol, Crimea, 04–10 Sept. 2016, pp. 1712–1715 (in Russian).
  28. Goncharuk, N. M., Karushkkin, N. F., Malyshko, V. V., Orehovskiy, V. A., 2013 Terahertz Diode on Gallium Nitride Microcathode. In: 8th Int. Kharkov Symp. on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW’13) and Workshop on Terahertz Technology (Teratech’13). Kharkov, Ukraine. 23–28 June, 2013, pp. 85–87 (in Russian).
  29. Goncharuk, N. M., Karushkkin, N. F., Malyshko, V. V., Orehovskiy, V. A., 2013. Submillimeter diode on gallium arsenide nanostructure. Ibid., pp. 121–123 (in Russian).
  30. Goncharuk, N. M., Karushkin, N. F., Malyshko, V. V., Orehovskiy, V. A., 2013. Gallium nitride diode with tunnel injection. Radiofizika i elektronika, 4(18)(3), pp. 69–78 (in Russian).
  31. Sizov, F. F., Apats’ka, M. V., Gumenjuk-Sichevska, J. V., Zabudsky, V. V., Momot, N. I., Smoliy, M. I., Tsybrii, Z. F., Dvoretsky, S. A., Mikhailov, N. N., Sakhno, N. V., 2011. Mulltielement detectors of terahertz radiation on the base of CdHgTe. Applied Physics, 2, pp. 61–66 (in Russian).
  32. Smirnov, K. V, Vakhtomin, Yu. B., Divochiy, A. V., Oshegov, I. V., Pentin, I. V., Gol'tsman, G. M., 2010. Receivers of infrared and terahertz radiation based on superconducting nanostructures. In: 20th Int. Crimean Conf. Microwave and Telecommunication Technology, CriMiCo'2010. Proc. Sevastopol, Ukraine, 13–17 Sept. 2010 (in Russian).
  33. Shashkin, V. I., Murel, A. V., 2007. Diagnostics of microwave low barrier detector diodes. In: 17th Int. Crimean Conf. Microwave and Telecommunication Technology, CriMiCo'2007. Proc. Sevastopol, Ukraine, 10–14 Sept. 2005, pp. 587–588 (in Russian).
  34. Terahertz (THz) Hot Electron Bolometer (HEB) Detectors from 0.3 to 70 THz, 2011 [online]. Available at: http://www.insight-product.com/detect3.htm
  35. Dooley, D., 2010. Sensitivity of broadband pyroelectric terahertz detectors continues to improve. Laser Focus World, 46(5), pp. 42–56.  
  36. Gasanov, L. G., Karushkin, N. F., Kremenchugsky, L. S., Yashchishin, P. I., 1970. Microwave power meter. USSR Authors’ Certificate 263697 (in Russian).
  37. Tager, A. S, Wald-Perlov, V. M., 1968. IPATT diodes and their application. Moscow: Sovetskoe radio Publ. (in Russian).
  38. Shestopalov, V. P., 1985. Physical basis of millimeter and submillimeter technology. B2T-K. Kiev: Naukova dumka Publ. Vol. 1 (in Russian).
  39. Komar, G. I., Shestopalov, V. P., 1985. Transmission lines for millimeter-wave integrated circuits. Dok. Akad. Nauk SSSR, 2, pp. 362–364 (in Russian).
  40. Zgurovsky, M. Z., Ilchenko, M. E., Kravchuk, S. A., Narytnik, T. N., Yakimenko, Yu. I., 2003. Microwave devices of telecommunication systems. Vol. 1. Propagation of radio waves. Antenna and frequency-selective devices. Kiev: Polytechnika Publ. (in Russian).
  41. Malyshko, V. V., Karushkin, N. F., Orekhovsky, V. A., 2013. A high-speed amplitude modulator of the millimeter range with a cascaded inclusion in the transmission line of arsenide gallium p-i-n-diodes. In: 23rd Int. Crimean Conf. Microwave and Telecommunication Technology, CriMiCo'2013. Proc. Sevastopol, Ukraine, 09–13 Sept. 2013, pp. 100–101 (in Russian).
  42. Goroshko, A. I., Kuleshov, E. M., 1972. Investigation of a hollow dielectric beam guide of the millimeter and submillimeter wave range. Radiotekhnika, 21, pp. 215–219 (in Russian).
  43. Karushkin, N. F., 2010. Characteristics of high-speed amplitude switches of inverted type in millimeter wave range. Tekhnika i Pribory SVCh, 1, pp. 11–15 (in Russian).
  44. Karushkin, N. F., 2002. Solid-state devices and components of the millimeter wavelength range. Priklad-naya radioelektronika, 1(1), pp. 77–81 (in Russian).
  45. Belous, O. I., Bulgakov, B. M., Fisun, A. I., 1998. Basic Principles of Elaborated of Solid-State Millimeter Wave Sources with Dispersive Open Oscillating System. In: Third Int. Kharkov Symp. "Physics and Engineering of Millimeter and Submillimeter Waves" (MSMW 98) (15–17 Sept. 1998, Kharkov): proc. Kharkov, Ukraine, 1998. Vol. 1, pp. 181–182.
  46. Karushkin, N. F., Malyshko, V. V., Orekhovsky, V. V., Tuharinov, A. A., 2016. Millimeter wave pi–n-diode switching controlled devices. Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 4–5, pp. 34–40 (in Russian).
  47. Karushkin, N. F., 2004. Devices for switching and modulating microwave power in the millimeter wave range. In: V. M. Yakovenko, ed. 2004. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ. 9(3), pp. 596–602 (in Russian).
  48. Armstrong, A., 1985. Monolithic Control Components for High Power MM-waves. Microwave Journal, 9, pp. 197–201.
  49. Коlе, Tom, 2016. GaN technology for commercial markets. SVCh Elektronika, 1, pp. 64–65 (in Russian).
  50. Nefedov, S. I., Noniashvili, M. I., Lagovier, А. А., Golubov, M. E., 2010. Prospects of millimeter radiolocation application for detection and recognition of stationary and moving objects against the background of the underlying surface. In: 4th All-Russian Conf. "Radio- location and radio communication". Proc. Moscow, Russia, 29 Nov. – 3 Dec. 2010. Moscow: IRE RAS Publ., pp. 237–242 (in Russian).
  51. Zubkov, A. N., Obukhanich, R. V., Karushkin, N. F., Prudius, I. N., Slerklo, L. M., 2002. Implementation prospects of radar systems for selection and recognition of complex targets in the millimeter range. Prikladnaya radioelektronika, 1(1), pp. 77–81 (in Russia).
  52. Anashkin, I. М., 2012. Development of small-caliber aviation weapons with multimode homing heads abroad. Bulletin of the Military Academy. Republic of Belarus, 2, pp. 4–23 (in Russian).
  53. Lukin, K. A., 2008. Noise millimeter wave radiolocation. In: V. M. Yakovenko, ed. 2008. Radiofizika
    i elektronika
    . Kharkov: IRE NAS of Ukraine Publ. 13(spec. iss.), pp. 344–358 (in Russian).
  54. Lukin, K. А., Vasuta, K. S., Zots, F. F., Vyplavin, P. L., Kudryashov, V. V., Ozerov, S. V., Palamarchuk, V. P., Suschenko, P. G., Lukin, S. K., 2013. Obtaining the radar portraits of military techniques by the ground-based noise waveform synthetic aperture radar. Systems of Arms and Military Equipment, 4(36), pp. 87–92 (in Russian).
  55. Melezhik, P. N., Andrenko, S. D., Sidorenko, Yu. B., Provalov, S. A., Razskazovskiy, V. B., Reznichenko, N. G., Zuykov, V. A., Balan, M. G., Varavin, A. V., Usov, I. S., Kolisnichenko, V. V. and Mus’kin, Yu. N., 2008.
    A Coherent Ka-Band Radar with a Semiconductor Transmitter for Airport Surface Monitoring. In: Proc. Tyrrhenian Int. Workshop on Digital Communications Enhanced Surveillance of Aircraft and Vehicles (ESAV’08) Capri, Italy, 3–5 Sept. 2008, pp. 168–172.
  56. Melezhik, P. N., Andrienko, S. D., Sidorenko, Yu. B., Provalov, S. A., Razskazovskiy, V. B., Reznichenko, N. G., Zuykov, V. A., Balan, M. G., Varavin, A. V., Kolisnichenko, M. V. and Mus’kin, Yu. N., 2009.
    A Radar Sensor for Airport Surface Monitoring System. In: IXth Int. Conf. AVIA-2009. Proc. Kyiv, Ukraine, 21–23 Sept. 2009. Kyiv: NAU Publ. Vol. 1, pp. 729–732 (in Russian).
  57. Kaloshin, V. A., Chapurskiy, V. V., 2012. Analysis of the radio-visualization systems on the basis of discrete multistatic radiogologografii. Bulletin of the Moscow State Technical University behalf of N. E. Bauman. Ser. Instrumentation, pp. 236–250 (in Russian).
  58. Kazarinov, E. D., 2009. Biological effects of the electromagnetic field of the terahertz range. Elektronnaya tekhnika. Ser. 1. SVCh-tekhnika, 4(508), pp. 48–58 (in Russian).
  59. Betsky, O. V., Kislov, V. V., Kozmin, A. S., Krenitskiy, A. P., Maiborodin, A. V., Smirnov, V. F., Tupikin, V. D., Yaremenko, U. G., 2007. Terahertz waves and their use. In: 17th Int. Crimean Conf. Microwave and Telecommunication Technology, CriMiCo'2007. Proc. Sevastopol, Ukraine, 10–14 Sept. 2007, pp. 771–773 (in Russian).
  60. Chusseau, L., Lampin, J. F., Bollaert, S., Duvillaret, L. and Mangeney, J., 2005. THz active devices and applications: a survey of recent researches. In: 35th European Microwave Conf. Paris, France, 4–6 Oct. 2005.Paris: IEEE.
  61. Betsky, O. V., Kirichuk, V. F., Krenitsky, A. P., Lebe-deva, N. N., Mayborodin, A. V., Tupikin, V. D., 2005. Terahertz waves and their application. Biomedical technologies. Biomedical Radioelectronics, 8, pp. 40–48 (in Russian).