Localized modes in the layered superconductor samples
Apostolov, SS, Kadygrob, DV, Маizelis, ZA, Rokhmanova, TN, Shmat’ko, AA, Yampol’sk, ii, VA |
Organization: O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine V. N. Karazin Kharkiv National University |
https://doi.org/10.15407/rej2018.04.055 |
Language: russian |
Abstract: Subject and purpose. In this review the propagation of electromagnetic waves localized near the boundary of a sample of a layered superconductor with layers either parallel or perpendicular to its surface is discussed. The results obtained in a number of papers studying the dispersion law for such waves are generalized, classified and supplemented. Due to the strong anisotropy and nonlinearity of the Josephson plasma in layered superconductors, localized waves can have unusual dispersion properties, and their excitation can be accompanied by unusual resonance phenomena. Methods and methodology. The electromagnetic field in a layered superconductor is determined by the distribution of the gauge-invariant phase difference of the order parameter, which satisfies the system of coupled sin-Gordon equations. Based on the solution of these equations, as well as the Maxwell equations in the dielectric environment, dispersion relations can be obtained for localized electromagnetic modes. Results. In samples of a layered superconductor, whose layers are parallel to its boundary, both surface waves and waveguide modes with normal dispersion can propagate. For samples, the layers in which are perpendicular to the boundary, the dispersion law depends on the angle of propagation of the waves relative to the superconducting layers. In this paper it is shown for the first time that waves localized in a layered superconductor plate have an anomalous dispersion for all directions of propagation, except propagation strictly along the layers. Dispersion curves for such waves can have points of maximum and/or minimum, which can lead to nontrivial effects (e.g., stopping of light or internal reflection). Also, the excitation of localized waves and the unusual resonant phenomena are discussed in the work. Conclusions. Due to the strong anisotropy and nonlinearity of the layered superconductor, the dispersion laws for waves, localized both in semi-infinite samples and in plates have a number of interesting features that lead to new phenomena important for using in the physics of the terahertz range. |
Keywords: anomalous dispersion, layered superconductor, localized waves |
Manuscript submitted 01.10.2018
PACS: 52.35.Mw, 73.20.Mf, 74.72.-h
Radiofiz. elektron. 2018, 23(4): 55-66
Full text (PDF)
- Kamihara, Y., Hiramatsu, H., Hirano, M., Kawamura, R., Ya-nagi, H., Kamiya, T., Hosono, H., 2006. Iron-based layered supercon-ductor: LaOFeP. J. Am. Chem. Soc., 128(31), pp. 10012–10013. DOI: https://dx.doi.org/10.1021/ ja063355c
- Kleiner, R., Steinmeyer, F., Kunkel, G., Muller, P., 1992. Intrinsic Josephson effects in Bi2Sr2CaCu2O8+d single crystals. Phys. Rev. Lett., 68(15), pp. 2394–2397. DOI: https://doi.org/10.1103/PhysRevLett.68.2394
- Wait, J. R., 1985. Electromagnetic Wave Theory. New York, Harper and Row.
- Mills, D. L., 1998. Nonlinear optics: basic concepts. Berlin: Springer.
- Rajaraman, R., 1987. Solitons and Instantons: An Introduction to Solitons and Instantons in Quantum Field Theory. Amsterdam: North-Holland.
- Tonouchi, M., 2007. Cutting-edge terahertz technology. Nat. Photonics, 1(2), pp. 97–105. https://doi.org/10.1038/ nphoton.2007.3
- Capasso, F., Gmachl, C., Sivco, D. L., Cho, A. Y., 2002. Quantum Cascade Lasers. Phys. Today. 55(5), pp. 34–40. DOI: https://doi.org/10.1063/ 1.1485582
- Koshelets, V. P., Shitov, S. V., 2000. Integrated superconducting receivers. Supercond. Sci. Technol., 13(5), pp. R53–R69. DOI:https://doi.org/10.1088/0953-2048/ 13/5/201
- Kleiner, R., 2007. Filling the Terahertz Gap. Science, 318(5854), pp. 1254–1255. DOI:https://dx.doi.org/10.1126/ science.1151373
- Savel'ev, S., Yampol'skii, V. A., Rakhmanov, A. L., Nori, F., 2010. Terahertz Josephson plasma waves in layered superconductors: spectrum, generation, nonlinear and quantum phenomena. Rep. Prog. Phys., 73(2), pp. 026501 (9 p.). DOI: https://doi.org/10.1088/0034-4885/73/2/026501
- Yampol’skii, V. A., Kats, A. V., Nesterov, M. L., Nikitin, A. Yu., Slipchenko, T. M., Savel’ev, S., Nori, F., 2009. Resonance effects due to the excitation of surface Josephson plasma waves in layered superconductors. Phys. Rev. B., 79(21), pp. 214501 (8 p.). DOI:https:// doi.org/10.1103/PhysRevB.79.214501
- Golick, V. A., Kadygrob, D. V., Yampol'skii, V. A., Rakhmanov, A. L., Ivanov, B. A., Nori, F., 2010. Surface Josephson Plasma Waves in Layered Superconductors above the Plasma Frequency: Evidence for a Negative Index of Refraction. Phys. Rev. Lett., 104(18), pp. 187003 (4 p.). DOI: https://doi.org/10.1103/PhysRevLett. 104.187003
- Slipchenko, T. M., Kadygrob, D. V., Bogdanis D., Yampol'skii, V. A., Krokhin, A. A., 2011. Surface and waveguide Josephson plasma waves in slabs of layered superconductors. Phys. Rev. B, 84(22), pp. 224512(8 p.). DOI: https://doi.org/10.1103/PhysRevB.84.224512
- Apostolov, S. S., Maizelis, Z. A., Sorokina, M.A., Yampol'skii, V. A., 2010. Nonlinear wood anomalies in the reflectivity of layered superconductors. Low Temp. Phys., 36(3), pp. 255–261. DOI: https://doi.org/10.1063/ 1.3331418
- Averkov, Yu. O., Yakovenko, V. M., Yampol’skii, V. A., Nori, F., 2012. Conversion of Terahertz Wave Polarization at the Boundary of a Layered Supercondutor due to the Resonance Excitation of Oblique Surface Waves. Phys. Rev. Lett., 109(2), pp. 027005 (5 p.). DOI:https:// doi.org/10.1103/PhysRevLett.109.027005
- Averkov, Yu. O., Yakovenko, V. M., Yampol’skii, V. A., Nori, F., 2013. Oblique surface Josephson plasma waves in layered superconductors. Phys. Rev. B, 87(5), pp. 054505 (8 p.). DOI:https://doi.org/10.1103/PhysRevB. 87.054505
- Yampol'skii, V. A., Gulevich, D. R., Savel'ev, S., Nori, F., 2008. Surface plasma waves across the layers of intrinsic Josephson junctions, Phys. Rev. B, 78(5), pp. 054502 (4 p.). DOI:https://doi.org/10.1103/PhysRevB. 78.054502
- Kadygrob, D. V., Golick, V. A., Yampol'skii, V. A., Slipchenko, T. M., Gulevich, D. R., Savel'ev, S., 2009. Excitation of surface plasma waves across the layers of intrinsic Josephson junctions, Phys. Rev. B, 80(18), pp. 184512 (10 p.). DOI:https://doi.org/10.1103/PhysRevB. 80.184512
- Apostolov, S. S., Maizelis, Z. A., Yampol'skii, V. A., Havrilenko, V. I., 2017. Anomalous dispersion of surface and waveguide modes in layered superconductor slabs. Low Temp. Phys., 43(2), pp. 296–302. DOI: https://doi.org/10.1063/1.4977740
- Apostolov, S. S., Kadygrob, D.V., Maizelis, Z. A., Nikolaenko, A. A., Shmat'ko, A. A., Yampol’skii, V. A., 2017. Normal and anomalous dispersion of weakly nonlinear localized modes in plate of layered superconductor. Radiofiz. elektron., 22(4), pp. 31–38. DOI: https://doi.org/10.15407/rej2017.04.031
- Apostolov, S. S., Kadygrob, D. V., Maizelis, Z. A., Nikolaenko, A. A., Yampol’skii, V. A., 2018. Nonlinear localized modes in a plate of a layered superconductor. Low Temp. Phys., 44(3), pp. 238–246. DOI: https:// doi.org/10.1063/1.5024544
- Rokhmanova, T., Apostolov, S. S., Kvitka, N.,
Yampol’skii, V. A., 2018. Effect of a dc magnetic field on the anomalous dispersion of localized josephson plasma modes in layered superconductors. Low Temp. Phys., 44(6), pp. 552–560. DOI:https://doi.org/10.1063/ 1.5037558 - Apostolov, S. S., Makarov, N. M., Yampol’skii, V. A., 2018. Excitation of terahertz modes localized on a layered superconductor: Anomalous dispersion and resonant transmission. Phys. Rev. B, 97(2), pp. 024510(11 p.). DOI: https://doi.org/10.1103/PhysRevB.97.024510
- Helm, Ch., Bulaevskii, L. N., 2002. Optical properties of layered superconductors near the Josephson plasma resonance. Phys. Rev. B, 66(9), pp. 094514 (23 p.). DOI: https://doi.org/10.1103/PhysRevB.66.094514
- Artemenko, S. N., Remizov, S. V., 2001. Stability, collective modes and radiation from sliding Josephson vortex lattice in layered superconductors. Physica C, 362(1–4), pp. 200–204. DOI:https://doi.org/10.1016/ S0921-4534(01)00670-0