• Українська
  • English
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)

Interpretation of observations of global electromagnetic resonance by ionosphere non-uniformity localized over the earthquake center

Nickolaenko, AP, Galuk, YP, Hayakawa, M
Organization: 

 

O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine
12, Proskura st., Kharkov, 61085, Ukraine

E-mail: sasha@ire.kharkov.ua
 

Sankt-Petersburg State University
35, University Avenue., St. Petersburg, Peterhof 198504, Russia

E-mail: j.galuk@spbu.ru
 

Institute Hayakawa, the seismic company electromagnetism,
Incubation Center 508 Telecommunication University,
Chofugaoka 1-5-1, Chofu, Tokyo 182-8585, Japan

E-mail: hayakawa@hi-seismo-em.jp

https://doi.org/10.15407/rej2019.03.021
Language: russian
Abstract: 

 

Objective and purpose of the work. We model disturbances in amplitude spectra of vertical electric and horizontal magnetic field components of the signals of global electromagnetic (Schumann) resonance by a seismogenic non-uniformity of the middle atmosphere. The point field source is used positioned at S-E Asia, Africa, or S. America. Observer is found at the Moshiri observatory in Japan (44.37 N, 142.24 E.) and the earthquake modifying the middle atmosphere is situated at Taiwan (21.82 N; 120.81 E). Disturbances are computed in amplitude Schumann resonance spectra and their similarity is demonstrated to observational data.

Methods and methodology of work. The propagation parameters of extremely low frequency (ELF) radio waves are found by using the full wave solution in form of Riccati equation. The spectral components of fields are found numerically be using the two dimension telegraph equations having the parameters of regular and non-uniform Earth – ionosphere cavity.

Results. We obtain numerical estimates for an impact of localized seismogenic non-uniformity on  amplitude spectra of electric and magnetic fields in the frequency band of global electromagnetic (Schumann) resonance. Similarity is demonstrated between the model and observational spectra.

Conclusion. The model suggested for a seismogenic non-uniformity in the moddle atmosphere allows to successfully interpret the observations ELF data.

Keywords: field disturbances by a localized non-uniformity, schumann resonance, seismogenic disturbance of moddle atmosphere conductivity

Manuscript submitted 26.12.2018
PACS: 93.85.Bc; 93.85.Jk; 94.20.Cf; 94.20.ws
Radiofiz. elektron. 2019, 24(3): 21-29

Full text  (PDF)

References: 
  1. Ouzounov, D., Pulinets, S., Hattori, K., and Taylor, P., 2018. Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies. Geophys. Monograph Ser. 1st ed. Hoboken, NJ.: John Wiley & Sons, Inc.; Washington, D.C.: American Geophysical Union, DOI: https://doi.org/10.1002/9781119156949
  2. Hayakawa, M., Molchanov, O.A., 2007. Seismo-electromagnetics as a new field of radiophysics: Electromagnetic phenomena associated with earthquakes. Radio Sci. Bull., 320, pp. 8–17.
  3. Ohta, K., Watanabe, N., Hayakawa, M., 2006. Survey of anomalous Schumann resonance phenomena observed in Japan, in possible association with earthquakes in Taiwan. Phys. Chem. Earth, Pafrts A/B/C, 31(4–9), pp. 397–402. DOI: https://doi.org/10.1016/j.pce.2006.02.031.
  4. Nickolaenko, A. P., Hayakawa, M., Sekiguchi, M., Ando, Y. and Ohta, K., 2006. Model modifications in Schumann resonance intensity caused by a localized ionosphere disturbance over the earthquake epicenter. Ann. Geophys., 24(2), pp. 567–575. DOI: https://doi.org/10.5194/angeo-24-567-2006.
  5. Hayakawa, M., Nickolaenko, A.P., Sekiguchi, M., Yamashita, K., Yu-ichi, Ida, Yano, M., 2008. Anomalous ELF phenomena in the Schumann resonance band as observed at Moshiri (Japan) in possible association with an earthquake in Taiwan. Nat. Hazards Earth Syst. Sci., 8(6), pp. 1309–1316. DOI: https://doi.org/10.5194/nhess-8-1309-2008.
  6. Hayakawa, M., Hobara, Y., Ohta, K., Izutsu, J., Nickolaenko, A. P., Sorokin, V., 2011. Seismogenic effects in the ELF Schumann resonance band. IEEJ Trans. FM, 131(9), pp. 684–690. DOI: https://doi.org/10.1541/ieejfms.131.684.
  7. Schekotov, A.Y., Molchanov, O.A., Hayakawa, M., Fedorov, E.N., Chebrov, V.N., Sinitsin, V.I., Gordeev, E.E., Andreevsky, S.E., Belyaev, G.G., Yagova, N.V., Gladishev, V.A. and Baransky, L.N., 2008. About possibility to locate an EQ epicenter using parameterts of ELF/ULF preseismic emission. Nat. Hazards Earth Syst. Sci., 8(6), pp. 1237–1242. DOI: https://doi.org/10.5194/nhess-8-1237-2008.
  8. Zhou, H., Zhou, Z., Qiao, X. and Yu, H., 2013. Anomalous phenomena in Schumann resonance band observed in China before the 2011 magnitude 9.0 Tohoku-Oki earthquake in Japan. J. Geophys. Res. Atmos., 118(23), pp. 13338–13345. DOI: https://doi.org/10.1002/2013JD020269.
  9. Schekotov, A.Y., Zhou, H.J., Qiao, X.L., Hayakawa, M., 2016. ULF-ELF Atmospheric radiation in possible association to the 2011 Tohoku earthquake as observed in China. Earth Sci. Res., 5(2), pp. 47–58. DOI: https://doi.org/10.5539/esr.v5n2p47.
  10. Hayakawa, M., Hobara, Y., Ohta, K., Izutsu, J., Nickolaenko, A.P., Sorokin, V., 2011. Seismogenic effects in the ELF Schumann resonance band. IEEJ Trans. Fundam. Mater., 131(9), pp. 684–690. DOI: https://doi.org/10.1541/ieejfms.131.684.
  11. Nickolaenko, A.P., Galuk, Yu.P., Hayakawa, M., 2019. Model of local disturbance in lower ionosphere over the earthquake and its effect on signals of global electromagnetic resonance. Radiophys. Electron., 24(1), pp. 33–46 (in Russian). DOI: https://doi.org/10.15407/rej2019.01.033.
  12. Sorokin, V.M., Hayakawa, M., 2008. On the generation of narrow-banded ULF/ELF pulsations in the lower ionospheric conducting layer. J. Geophys. Res., 113(A6), pp. A06306 (6 p.). DOI: https://doi.org/10.1029/2008JA013094.
  13. Hayakawa, M., Ohta, K., Sorokin, V.M., Yaschenko, A.K., Izutsu, J., Hobara, Y. and Nickolaenko, A.P., 2010. Interpretation in terms of gyrotropic waves of Schumann-resonance-like line emissions observed at Nakatsugawa in possible association with nearby Japanese earthquakes. J. Atmos. Solar-Terr. Phys., 72(17), pp. 1292–1298. DOI: https://doi.org/10.1016/j.jastp.2010.09.014.
  14. Ohta, K., Izutsu, J., Schekotov, A. and Hayakawa, M., 2013. The ULF/ELF electromagnetic radiation before the 11 March 2011 Japanese earthquake, Radio Sci., 48(5), pp. 589–596. DOI: https://doi.org/10.1002/rds.20064.
  15. Hayakawa, M., Rozhnoi, A., Solovieva, M., Hobara, Y., Ohta, K., Schekotov, A. and Fedorov, E., 2013. The lower ionospheric perturbation as a precursor to the 11 March 2011 Japan earthquake. Geomat. Nat. Haz. Risk, 4(3), pp. 275–287. DOI: https://doi.org/10.1080/19475705.2012.751938.
  16. Asano, T. and Hayakawa, M., 2018. On the Tempo-Spatial Evolution of the Lower Ionospheric Perturbation for the 2016 Kumamoto Earthquakes from Comparisons of VLF Propagation Data Observed at Multiple Stations with Wave-Hop Theoretical Computations. Open J. Earthq. Res., 7(3), pp. 161–185. DOI: https://doi.org/10.4236/ojer.2018.73010.