Back projection algorithm modification for higher probability of moving target detection in SAR data processing
Balaban, MV, Goncharenko, YV, Gorobets, VM, Kovorotniy, OL, Kivva, FV, Farquharson, G |
Organization:
O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine Microwave Systems Laboratory, Colorado State University, Air-Sea Interaction and Remote Sending Department, Applied Physics Laboratory, |
https://doi.org/10.15407/rej2020.01.038 |
Language: russian |
Abstract:
Subject and Purpose. The paper is concerned with Synthetic Aperture Radar (SAR) imaging and data processing and seeks to modify the conventional time-domain back projection algorithm (BPA) used for creating a SAR image. The modification consists in the radar squint-angle control at the stage of data processing. Methods and Methodology. Mathematical modeling methods are used. The modeling results are verified by reference to the experimental data. Results. A modification proposed for the back projection algorithm (BPA) enables fast-moving targets to be detected on a stationary image created by synthetic-aperture squint-angle side-looking radar. The back projection algorithm with the squint angle control was experimentally verified by a speedboat example to show that the SAR image has signatures of fast-moving targets which are not observed on the image formed by the classic back projection algorithm. Conclusion. The proposed modification of the back projection algorithm improves the detection probability of fast-moving targets on a SAR image and does it without any complication of the classic back projection algorithm or additional computing time. |
Keywords: back projection algorithm, moving target, radar image, synthetic aperture radar |
Manuscript submitted 02.09.2019
Radiofiz. elektron. 2020, 25(1): 38-49
Full text (PDF)
1. Neronskiy, L.B., Mihailov, V.F., Bragin, I.V., 1999. Microwave equipment for earth and atmosphere remote sensing. Synthesized antenna aperture radar. Saint-Petersburg: Saint-Petersburg State University of Aerospace Instrumentation (SUAI) Publ. (in Russian). | ||||
2. Verba, V.S. ed., Neronskiy, L.B., Osipov, I.G., Turuk, V.E., 2010. Space-borne Earth Surveillance Radar Systems. Moscow: Radiotechnika Publ. (in Russian). | ||||
3. Ranney, R.K., 1971. Synthetic aperture imaging radar and moving targets. IEEE Trans. Aerosp. Electron. Syst., 7(3), pp. 499-505. DOI: https://doi.org/10.1109/TAES.1971.310292 | ||||
4. Cumming, I.G., Wong, F.W., 2005. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation. Boston: ArtechHaus. | ||||
5. Stringham, C., Long, D.G., 2011. Improved processing of the CASIE SAR data. In: Geoscience and Remote Sensing Symp. (IGARSS). Vancouer, Canada, 24-29 July 2011. IEEE. Available from: <https://ieeexplore.ieee.org/document/6049325> [Accessed 28 Oct. 2019]. DOI: https://doi.org/10.1109/IGARSS.2011.6049325 | ||||
6. Raney, R.K., Runge, H., Bamler, R., Cumming, I.G., Wong, F.H., 1994. Precision SAR processing using chirp scaling. IEEE Trans. Geosci. Remote Sens., 32(4), pp. 786-799. DOI: https://doi.org/10.1109/36.298008 | ||||
7. Farina, A., 2002. STAP for SAR. In: Military Application of Space-Time Adaptive Processing. Report: ADA415645. [pdf] 23 p. Available from: <https://apps.dtic.mil/dtic/tr/fulltext/u2/p014042.pdf> [Accessed 28 Oct. 2019]. | ||||
8. D'Addio E., Di Bisceglie, M., Bottalico, S., 1994. Detection of moving objects with airborne SAR. Signal Process., 36(2), pp. 149-162. DOI: https://doi.org/10.1016/0165-1684(94)90204-6 | ||||
9. Bezvesilniy, O.O., Kochetov, B.A., 2013. Detection of moving targets by multi-look single-antenna synthetic aperture radar. Radiophys. Electron., 4(18)(3), pp. 37-46 (inRussian). | ||||
10. Hélène, Oriot, 2014. Moving Target Detectionon SAR Images. [pdf] Available from: <https://www.sto.nato.int/publications/ STO%20Educational%20Notes/STO-EN-SET-191-2014/EN-SET-191-2014-07.pdf> [Accessed 28 Oct. 2019]. | ||||
11. Duersch, M.I., 2013. Backprojection for Synthetic Aperture Radar. [pdf] PhD. Brigham Young University. Available from: <https://www.mers.byu.edu/docs/thesis/phddiss_duersch.pdf> [Accessed 28 Oct. 2019]. | ||||
12. Pettersson, M.I., 2004. Detection of moving targets in wideband SAR. IEEE Trans. on Aerospace and Electron.Syst., 40(3), pp. 780-796. DOI: https://doi.org/10.1109/TAES.2004.1337454 | ||||
13. Yegulalp, A.F., 1999. Fast backprojection algorithm for synthetic aperture radar. In: Proc. 1999 IEEE Radar Conf. Radar into the Next Millennium. Waltham, MA, USA, 22-22 April 1999. IEEE, 1999. DOI: https://doi.org/10.1109/NRC.1999.767270 | ||||
14. Ulander, L.M., Hellsten, H., Stenstrom, G., 2003. Synthetic-aperture radar processing using fast factorized back-projection. IEEE Trans. Aerosp. Electron. Syst., 39(3), P. 760-776. DOI: https://doi.org/10.1109/TAES.2003.1238734 | ||||
15. Minardi, M.J., Gorham, L.A., Zelnio, E.G., 2005. Ground moving target detection and tracking based on generalized SAR processing and change detection (Invited Paper). In: Proc. SPIE 5808, Algorithms for Synthetic Aperture Radar Imagery XII. Orlando, Florida, USA, 28 March - 1 April 2005. SPIE. DOI: https://doi.org/10.1117/12.609893 | ||||
16. Park, J.-W., Kim, J.H., Won, J.-S., 2017. Fast and Efficient Correction of Ground Moving Targets in a Synthetic Aperture Radar, Single-Look Complex Image. Remote Sens., 9(9), 926. DOI: https://doi.org/10.3390/rs9090926 | ||||
17. Stringham, C., Long, D.G., 2014. GPU Processing for UAS-Based LFM-CW Stripmap PCA. ISPRS J. Photogramm. Remote Sens., 80(12), pp. 1107-1115. DOI: https://doi.org/10.14358/PERS.80.12.1107 | ||||
18. Farquharson, G., Widjaja, D. and Jessup, A., 2002. A miniaturized dual-beam along-track interferometric SAR for nearshore ocean remote sensing. In: Int. Geosci. Remote Sens. Symp. (IGARSS 2012): proc. Munich, Germany, 22-27 July 2012. IEEE. | ||||
19. Balaban, M., Farquharson, G., Goncharenko, Y., Gorobets, V, Kovorotniy, A., Kivva, F., Jessup, A., 2017. Small Boat Detection with Along-Track Interferometric SAR. In: 2017 IEEE Radar Conf. (RadarConf). Seattle, WA, USA, 8-12 May 2017. IEEE. DOI: https://doi.org/10.1109/RADAR.2017.7944356 |