A submillimeter frequency multiplier. Part 1. Conditions of simultaneous two-mode excitation in the slow-wave structure of the o-type oscillator
Mil’cho, MV, Ilyenko, K |
Organization:
O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine |
https://doi.org/10.15407/rej2020.04.038 |
Language: ukranian |
Abstract:
Subject and Purpose. A special need for oscillators amenable to operation in the short-wave end of the submillimeter wave band sends us in search for new ways of their development. A proposal exists related to vacuum-tube frequency multipliers based on the backward-wave oscillator (BWO) or its variant, the clinotron. Sometimes a simultaneous excitation of two different-frequency oscillations is experimentally observed in ordinary millimeter wave clinotrons, orotrons and diffraction radiation oscillators. The aim of the present study is to examine whether those operational regimes can be implemented in the creation of electronic frequency multipliers in the submillimeter wave band. Methods and Methodology. The research method is a theoretical analysis of the process of simultaneous interaction of the electron beam with the electromagnetic fields of two modes in the BWO slow-wave structure. The aim is finding relationships to impose on the slow-wave structure parameters and the BWO operation figures and thus furnish a simultaneous excitation of the two modes. The obtained relationships are tested against published experimental results. Results. Two conditions of simultaneous mode excitations have been formulated, requiring (i) equal velocities of the operating spatial harmonics and (ii) their strict frequency multiplicity. Handy diagrams have been constructed, which made it possible to build frequency multiplication schemes with any multiplicity. The rigorous analytical method of comb dispersion calculation has been generalized to the higher passbands of large numbers. The calculation results have been compared with relevant experimental data, lending support to the validity of the obtained formulas to describe the frequency multiplication regime. Conclusion. A possibility has been theoretically shown of designing submillimeter vacuum-tube frequency multipliers upon clinotron-type oscillators with a single slow-wave structure. The regime of simultaneous generation of two given frequencies requires that the system dispersion in different passbands be controlled by moving a screen over the comb-type slow-wave structure. |
Keywords: clinotron, frequency multiplier, spatial harmonics, vacuum tubes |
Manuscript submitted 10.03.2020
Radiofiz. elektron. 2020, 25(4): 38-53
Full text (PDF)
1. Levin, G.Y., Borodkin, A.I., Kirichenko, A.Y., Usikov, A.Y. ed., Churilova, S.A., 1992. Klynotron. Kiev: Naukova Dumka Publ. (in Russian). | ||||
2. Dayton, J.A.Ir., Mearini, G.T., Kory, C.L., 2004 Diamond Based Sub Millimeter Back Wave Oscillator. In: IEEE Int. Vacuum Electronics Conf. (IVEC 2004): conf. dig. Monterey, CA, USA, 27-29 April 2004, pp. 71-72. | ||||
3. Deviatkov, N.D. ed., 1985. BWT of sub-mm wave-band. Moscow: Radio i Sviaz' Publ. (in Russian). | ||||
4. Ives, L., Kory, C., Read, M., 2004. Development of Terahertz Backward Wave Oscillators. In: IEEE Int. Vacuum Electronics Conf. (IVEC 2004): conf. dig. Monterey, CA, USA, 27-29 April 2004, pp. 68-69. | ||||
5. Korneenkov, V.K., Kurin, V.G., 2008. About work of a diffraction radiation oscillator operating on the higher space harmonics. In: V.M. Yakovenko, ed., 2008. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ. 13(2), pp. 227-231 (in Russian). | ||||
6. Miroshnichenko, V.S., Korneenkov, V.K., Senkevich, E.B., 2010. Excitation of diffraction radiation oscillator with double grating on higher space harmonics. In: 20th Int. Crimean Conf. "Microwave and telecommunication technologies" (CriMiCo'2010). Sevastopol, Crimea, Ukraine, 13-17 Sept. Vol. 1, pp. 265-266 (in Russian). | ||||
7. Myasin, E.A., Il'in, A.Yu., Evdokimov, V.V., Chigarev, S.G., 2006. Operation of the Short-Millimeter-Wave Orotron on the Second Space Harmonic. In: 16th Int. Crimean Conf. "Microwave and telecommunication technologies" (CriMiCo'2006). Sevastopol, Crimea, Ukraine, 11-15 Sept. Vol. 1, pp. 265-266 (in Russian). DOI: https://doi.org/10.1109/CRMICO.2006.256385 | ||||
8. Milcho, M.V., Tischenko, A.S., Zavertaniy, V.V., Lopatin, I.V., Teriohin, S.N., 2015. Clinotron as a frequency multiplier in the sub-mm waveband ( 0.935 mm). Radiofiz. elektron., 20(2), pp. 61-67 (in Russian). DOI: https://doi.org/10.15407/rej2015.02.061 | ||||
9. Mil'cho, M.V., 2019. Research and design of power catcher for electro-vacuum frequency multiplier of sub-millimeter wave range. Radiofiz. elektron., 24(3), pp. 45-60 (in Russian). DOI: https://doi.org/10.15407/rej2019.03.045 | ||||
10. Bratman, V.L., Makhalov, P.B., Fedotov, A.E., Khaimovich, I.M., 2007. Excitation of orotron oscillations at the doubled frequency of a surface wave. Radiophys. Quantum Electron., 50(10-11), pp. 780-785. DOI: https://doi.org/10.1007/s11141-007-0068-y | ||||
11. Skrynnik, B.K., Korneenkov, V.K., Demchenko, M.Yu., 2000. On the feedback in the Smith-Purcell experiments. In: V.M. Yakovenko, ed., 2000. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ. 5(3), pp. 14-18 (in Russian). | ||||
12. Bogomolov G.D., Borodkin A.I.,Kushch V.S., Levin G.Ya., Rusin F.S., Churilova S.A., 1970. Comb-type system examination in Orotron and BWT regimes. Elektronnaya Tekhnika. Ser. 1. SVCH-Tekhnika, 1, pp. 97-102 (in Russian). | ||||
13. Mil'cho, M.B., Efimov, B.P., Zavertanniy, V.V., Goncharov, V.V., 2005. Peculiar properties of operating modes of klinotron-type oscillators. In: V.M. Yakovenko, ed. 2005. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ. 10(3), pp. 435-440 (in Russian). | ||||
14. Kirilenko, A.A., Senkevich, S.L., Steshenko, S.O., 2007. Dispersion analysis of three dimensional slow-wave structures on basis of generalized scattering matrix method. In: V.M. Yakovenko, ed. 2007. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ. 12(spec. iss.), pp. 122-129 (in Russian). | ||||
15. Milcho, M.V., Ilyenko, K.V., Lopatin, I.V., Zavertanniy, V.V., Yatsenko, T.Yu., Tishchenko, A.S., 2019. Klynotron - Multiplier for Submillimeter Waveband. Telecommunications and Radio Engineering, 78(2), pp. 137-152. DOI: 10.1615/TelecomRadEng.v78.i2.50. DOI: https://doi.org/10.1615/TelecomRadEng.v78.i2.50 | ||||
16. Hongzhu, Xi, Zhaochang, He, Jianguo, Wang, Rong, Li, Gang, Zhu, Zaigao, Chen, Jinsong,Liu, Luwei, Liu, Hao, Wang, 2017. A continuous - wave clinotron at 0.26 THz with sheet electron beam. Phys. Plasma, 24(3), pp. 033105(6 p.). DOI: https://doi.org/10.1063/1.4977809 | ||||
17. Nikol'skiy, V.V., 1961. Electromagnetic field theory. Moscow: Vysshaya shkola Publ. | ||||
18. Verbitskii, I.L., 1980. Dispersion Relations for Comb-Type Slow-Wave Structures. IEEE Trans. Microwave Theory Tech., 28(1), pp. 48-50. DOI: https://doi.org/10.1109/TMTT.1980.1130005 | ||||
19. Mil'cho, M.V., 2003. The conformal mapping method for analysis high-frequency electro-magnetic fields in slow-wave structures. Ch. 1. The case of large slow-downs. In: V.M. Yakovenko, ed. 2003. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ. 8(1), pp. 136-147 (in Russian). | ||||
20. Mil'cho, M.V., 2003. The conformal mapping method for analysis high-frequency electro-magnetic fields in slow-wave structures. Ch. 2. Electro-dynamics solutions being equivalent to electrostatic ones. In: V.M. Yakovenko, ed. 2003. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ. 8(2), pp. 259-268 (in Russian). | ||||
21. Mil'cho, M.V., 2003. The conformal mapping method for analysis high-frequency electro-magnetic fields in slow-wave structures. Ch. 3. The concrete slow-wave systems analysis. In: V.M. Yakovenko, ed. 2007. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ. 8(3), pp. 374-385 (in Russian). | ||||
22. Shestopalov, V.P., Kirilenko, A.A., Masalov, S.A., Sirenko, Yu.K., 1986. Resonant wave scattering. Vol. 1. Diffraction gratings. Kyiv: Naukova dumka Publ. (in Russian). | ||||
23. Mil'cho, M.V., 1998. The use of conformal mapping for analysis of high frequency fields in the periodic structures. In: V.M. Yakovenko, ed. 1998. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ. 3(1), pp. 20-27 (in Russian). |