• Українська
  • English
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)

Q-FACTOR MEASUREMENTS UNDER CONDITIONS OF CLOSE-FREQUENCY MODES CONVERGENCE IN OPEN RESONATORS

Skresanov, VN, Glamazdin, VV
Organization: 

O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine
12, Proskura st., Kharkov, 61085, Ukraine
E-mail: skresanov@ire.kharkov.ua

https://doi.org/10.15407/rej2015.03.011
Language: russian
Abstract: 

A method is proposed for measuring the Q-factor of microwave resonators, which allows the study of microwave properties of materials and environments using open resonators of different types under conditions of availability of close-frequency modes in the surroundings of the given mode, the radiation losses of coupling elements and crosstalk between them. Measurement of the loaded Q-factor is based on both the representation of the frequency dependence of the resonator complex reflection or transmission coefficients by the sum of fractional-linear complex functions, describing the responses of individual modes, and approximation of a square measured frequency response by means of the variation gradient method. The eigen Q-factor calculation method is based on calculation of the resonator impedance on the measured reflectance modulus. The developed algorithms for processing measurement data are implemented in a computer program and are illustrated by the example of the processing frequency dependences of S-parameters for the open dielectric mirror resonator excited with whispering gallery modes, when the S-parameters are calculated by finite element method. Measuring quality factors by the proposed method eliminates the systematic measurement error associated with the distortion of the resonance curves, and makes it possible to perform measurements in conditions where classical methods are unsuitable.

Keywords: amplitude-frequency characteristic, fractional-linear approximation, impedance, open resonator, Q-factor measurement

Manuscript submitted  12.08.2015 г.
PACS     84.40.Dc
Radiofiz. elektron. 2015, 20(3): 11-21
Full text  (PDF)

References: 
  1. Tischer, F., 1963. Measuring technique at microwave frequencies. Moscow: Fizmatgiz Publ. (in Russian).
  2. Brandt, A. A., 1963. Investigation of dielectric materials at microwave frequencies. Moscow: Fizmatgiz Publ. (in Russian).
  3. Trunin, M. P, 1998. Surface impedance of high-temperature superconducting monocrystals in the microwave frequency range. Uspekhi fizicheskih nauk. 168(9), pp. 931-952 (in Russian).
  4. Ginzton, E.L., 1957. Microwave measurements. New York: McGraw-Hill Book Co., Inc.
  5. Valitov, R. A., Skresanov, V. N. and Fisun, A. I., 1984. Q-factor measurements. In: R. A. Valitov, B. I. Makarenko, eds. 1984. Measurements at millimeter and submillimeter waves. Moscow: Radio and Svyz’ Publ. (in Russian).
  6. Miroshnichenko, V. S. and Senkevich, E. B., 2002. Experimental determination of equivalent circuit parameters of an open resonator coupled to transmission lines. In: V. M. Yakovenko, ed. 2002. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ., 7(2), pp. 301–311 (in Russian).
  7. Skresanov, V. M., Glamazdin, V. V., Natarov, M. P. and Shubny, O. I., 2007. New devices for connection of high-quality microwave resonators with waveguides: Theory, design and experiment. In: Priorities of scientific collaboration between SFBR and BRFBR: Materials of joint competitive projects of the State Foundation of Basic Research and Belorussian Republican Foundation of Basic Research. Kiev: DIA Publ., pp. 177–190 (in Ukrainian).
  8. Skresanov, V. N., Glamazdin, V. V., Natarov, M. P., and Shubny, A. I., 2010. Characteristics of waveguide to quasioptical or dielectric resonator coupling. In: 2010 Int. Kharkov Symp. Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW’2010), Kharkov, Ukraine, 21–26 June, 2010.DOI: https://doi.org/10.1109/MSMW.2010.5545973
  9. Glamazdin, V. V., Natarov, M. P., Skresanov, V. N., and Shubny, A. I., 2011. Radiation loss of local coupling elements of open resonators. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ, 2(16), pp. 12–25.
  10. Kajfez, D., 1994. Q Factor. Oxford, MS: Vector Fields.
  11. Kajfez, D., 1994. Linear fractional curve fitting for measurement of high Q-factors. IEEE Trans. Microwave Theory Tech., 42(7), pp. 1149–1153.DOI: https://doi.org/10.1109/22.299749
  12. Leong, K. and Mazierska, J., 2001. Accurate Measurements of Surface Resistance of HTS Films using a Novel Transmission Mode Q-factor Technique. J. Supercond., 14(1), pp. 93–103.DOI: https://doi.org/10.1023/A:1007892408105
  13. Leong, K. and Mazierska, J., 2002. Precise Measurements of the Q-factor of Transmission Mode Dielectric Resonators: Accounting for Noise, Crosstalk, Coupling Loss and Reactance, and Uncalibrated Transmission Lines. In: Int. Microwave Symp. (IMS2002). TH2E-3: Microwave Measurements I. Seattle, Washington, 3–7 June 2002.
  14. Skresanov, V. N., Glamazdin, V. V., Shubny, A. I. and Eremenko, Z. E., 2009. Hardware computing system for measurement of low- and high Q resonators characteristics within the frequency bandwidth from 26 to 37.5 GHz. In: V. M. Yakovenko, ed. 2009. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ., 14(3), pp. 389–400 (in Russian).
  15. Wu, Y., Zhou, S. Y., Wang, X. Y., Cao, L. X., Zhang, X. Q., Luo, S., He, Y. S., Barannik, A. A., Cherpak, N. T., Skresanov, V. N., 2011. Microwave Study of FeSe0.3Te0.7 Thin Film by TE011-Mode Sapphire Dielectric Resonator. IEEE Trans. Appl. Supercond., 21(3), pp. 599–601.DOI: https://doi.org/10.1109/TASC.2010.2096174
  16. Barannick, A., Cherpak, N. T., Tanatar, M., Vitusevich, S., Skresanov, V., Canfield, P. C. and Prozorov, R., 2013. Millimeter-wave surface impedance of optimally-doped Ba(Fe1−xCox)2As2 single crystals. Phys. Rev. B., 87(1), pp. 014506 (7 p.).
  17. Andreev, V. M., Drobakhin, O. O. and Saltykov, D. Y., 2013. Estimation of the resonance frequency and Q-factor of a half-disk dielectric resonator using a fractionally rational approximation. Radiofizika and Radioatronomiya, 18(4), pp. 362–372 (in Russian).
  18. Kirichenko, A. Y., Prokopenko, Y. V., Filippov, Y. F. and Cherpak, N. G., 2008. Quasi-optical solid-state resonators. Kiev: Naukova dumka Publ. (in Russian).
  19. Montgomery, C. G., Dick, R. H. and Purcell, E. M., 1948. Principles of Microwave Circuits. N. Y.-Toronto-L.: McGraw-Hill Book Company Inc.
  20. Weinstein, L. A., 1966. Open resonators and open waveguides. Moscow: Sovetskoe Radio Publ. (in Russian).
  21. Shteinsleiger, V. B., 1955. Wave interaction effects in electrodynamic resonators. Moscow: State Publ. House of Defense Industry (in Russian).
  22. Glamazdin, V. V., Skresanov, V. N. and Shubny, A. I., 2008. Impedance method for investigation of open resonators characteristics under conditions of hybrid mode excitation. In: V. M. Yakovenko, ed. 2008. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ., 13(1), pp. 9–19 (in Russian).
  23. Skresanov, V. N., Glamazdin, V. V. and Cherpac, N. T., 2011. The Novel Approach to Coupled Mode Parameters Recovery from Microwave Resonator Amplitude-Frequency Response. In: 41th European Microwave Conf. (EuMW 2011): proc. Manchester, UK, 9–14 Okt. 2011, pp. 826–829.
  24. Isakova, O. P., Tarasevich, Y. Y. and Yuzyuk, Y. I., 2007. Processing and visual representation of physical experiment data with the use of the Origin software package. Spectrum analysis and processing. Rostov-on-Don: Tutorial, Southern Federal University Publ. (in Russian).
  25. Egorov, V. N., 2010. Characteristics of microwave resonators with non-resonant leakage of the power. Izv. Vyssh. Uchebn. Zaved. Radiofiz., 53(8), pp. 493–503 (in Russian).