• Українська
  • English
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)

NANOCYLINDERS MADE OF NOBLE METALS AS SCATTERERS OF PLANE ELECTROMAGNETIC WAVE

Velichko, EA, Nickolaenko, AP
Organization: 

O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine
12, Proskura st., Kharkov, 61085, Ukraine
E-mail: elena.vel80@gmail.com

https://doi.org/10.15407/rej2015.04.062
Language: russin
Abstract: 

Nanowires and nanotubes made of noble metals are widely used in today’s technologies as elements of lasers, biosensors and other devices. However, not all possible problems arising in study of such objects are presented in literature. In this paper, by means of numerical simulation, the cylindrical nanoobjects made of gold and silver are considered as a specific prism that is capable of selecting isolated wavelength bands and scattering them at different angles. For this purpose a plane H-polarized electromagnetic wave scattering by nanocylinders with or without concentric dielectric cover or nanotubes made out of silver and gold in the visible range of wavelengths are studied. The scattering problem is solved in the classical manner, by separation of variables in polar coordinates. The complex permittivity is used in computations of gold and silver based on published experimental data. The results suggest that the studied nanoobjects can serve as a frequency-selective receiver or an optical filter which selects and rejects at different angles some wavelengths, but there is a great influence of geometrical parameters of scatterers and the dielectric constant of the coating.

Keywords: plasmon, surface plasmon resonance, wave scattering

Manuscript submitted  03.11.2015 г.
PACS     41.20.Jb; 42.25.Bs
Radiofiz. elektron. 2015, 20(4): 62-69
Full text  (PDF)

References: 
  1. Martin, O. J. F., 2003. Plasmon resonances in nanowires with a non-regular cross-section. In: J. Tominaga and D. P. Tsai (eds.), 2003. Optical Nanotechnologies, Topics Appl. Phys., 88, pp. 183–210. Berlin: Heidelberg Springer-Verlag. DOI: https://doi.org/10.1007/3-540-45871-9_13
  2. Fredkin, D. R. and Mayergoyz, I., 2003. Resonant behavior of dielectric objects (electrostatic resonances). Phys. Rev. Lett., 91(25), pp. 3902–3905. DOI: https://doi.org/10.1103/PhysRevLett.91.253902
  3. Schroster U., Dereus, A., 2001. Surface plasmon-polaritons on metal cylinders with dielectric core. Phys. Rev. B, 64(12), pp. 125420 (10 p.).
  4. McPhillips, J., Murphy, A., Jonsson, M. P., Hendren, W. R., Atkinson, R., Höök, F., Zayats, A. V. and Pollard, R. J., 2010. High-performance biosensing using arrays of plasmonic nanotubes. ACS Nano. 4(4), pp. 2210–2216. DOI: https://doi.org/10.1021/nn9015828
  5. Murphy, A., Sonnefraud, Y., Krasavin, A. V., Ginzburg, P., Morgan, F., McPhillips, J., Wurtz, G., Maier, S. A., Zayats, A. V. and Pollard, R., 2013. Fabrication and optical properties of large-scale arrays of gold nanocavities based on rod-in-a-tube coaxials. Appl. Phys. Lett., 102(10), pp. 103103 (5 p.). DOI: https://doi.org/10.1063/1.4794935
  6. Velichko, E. A., Natarov, D. M. and Nosich, A. I., 2013. Plasmon-assisted scattering of light by a circular silver nanowire with concentric dielectric coating. In: 15th Int. Conf. Transparent Optical Networks (ICTON 2013): proc. Cartagena, Spain, 23–27 June, 2013. DOI: https://doi.org/10.1109/ICTON.2013.6602893
  7. Zhu, J., (2007), Theoretical study of the light scattering from gold nanotubes: effect of wall thickness. Mater. Sci. Eng., A., 454-455, pp. 685–689. DOI: https://doi.org/10.1016/j.msea.2006.12.076
  8. Velichko, E. A. and Nosich, A. I., 2013. Refractive index sensitivities of hybrid surface-plasmon resonances for a core-shell circular silver nanotube sensor. Opt. Lett., 38(23), pp. 4978–4981. DOI: https://doi.org/10.1364/OL.38.004978
  9. Velichko E. A. 2014. Numerical modeling of plasmon-assisted nanotube sensors of the host-medium refractive index. In: IEEE Int. Conf. Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO2014): proc. Vienna and Klagenfurt, Austria, 6–19 July 2014. Session TH1. DOI: https://doi.org/10.1109/NEMO.2014.6995680
  10. Wait, J. R., 1986. Introduction to antennas and propagation. New York-London-Toronto: Peter Peregrinus Ltd.
  11. Johnson, P. B. and Christy, R. W., 1972. Optical constants of the noble metals. Phys. Rev. B, 6(12), pp. 4370–4378. DOI: https://doi.org/10.1103/PhysRevB.6.4370
  12. Velichko, E. A. and Nickolaenko, A. P., 2010. Modeling of plane electromagnetic wave scattering by dielectric cylinder. Radiofizika i elektronika, 1(15)(3), pp. 17–24 (in Russian).
  13. Van de Hulst, 1961. Light scattering by small particles. Translated from English and ed. by V. V. Sobolev. Moscow: Inostrannaya literatura Publ. (in Russian).
  14. Velichko, E. A. and Nickolaenko, A. P., (2014), Scattering of a plane electromagnetic wave by a metal cylinder with dielectric or metamaterial coating. Izv. Vyssh. Uchebn. Zaved. Radiofiz., 57(1), 48–58 (in Russian). DOI: https://doi.org/10.1007/s11141-014-9492-y