• Українська
  • English
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)

EFFECT OF LOCKING THE BEND OF WAVEGUIDE NEARBY CRITICAL FREQUENCIES OF THE SECOND MODE

Pazynin, VL
Organization: 

O. Ya. Usikov Institute for Radiophysics and Electronics of the NAS of Ukraine
12, Acad. Proskura st., Kharkiv, 61085, Ukraine
E-mail: pazynin@ire.kharkov.ua

https://doi.org/10.15407/rej2017.02.003
Language: Russian
Abstract: 

A rigorous mathematical model of the diffraction of an electromagnetic wave in the bend of a plane-parallel waveguide is constructed. Within numerical simulation of the waveguide bend the effect of its complete locking at a frequency located nearby the critical frequency of the second mode is revealed. The resonant nature of this effect, which consists of excitation of locking oscillation in this waveguide inhomogeneity, is found. The conclusion is that the bend of a waveguide could be considered as an open-type waveguide resonator. The importance of the solved problem is caused by wide waveguide bends applications in the microwave technology.

Keywords: finite difference method, full reflection resonance, waveguide bend, waveguide corner bend

Manuscript submitted 11.04.2017
PACS 41.20.-q; 02.70.Bf
Radiofiz. elektron. 2017, 22(2): 3-10
Full text (PDF)

References: 
  1. SHESTOPALOV, V. P, KIRILENKO, A. A., RUD’, L. A., 1986. Resonance wave scattering. Vol. 2. Waveguide discontinuities. Kiev: Naukova dumka Publ. (in Russian).
  2. RUD’, L. A., SHESTOPALOV, V. P, The Corner bend of a waveguide is an open resonator of waveguide type. Doklady Akademii nauk SSSR. Vol. 294, no. 4, pp. 848–850 (in Russian).
  3. RUD’, L. A., 1988. Free oscillations and resonance phenomena in H-plane corner band of rectangular waveguides. Vol. 33, no. 6, pp. 1117–1125 (in Russian).
  4. VOSKRESENSKIY, D. I., 1957. Uniformly curved waveguide of rectangular cross section. Trudy Moskovskogo aviatsionnogo instituta. Iss. 73, pp. 5–44 (in Russian).
  5. CORNET, P., DUSSÉAUX, R., CHANDEZON, J., 1999. Wave propagation in curved waveguides of rectangular cross section. IEEE Transactions on microwave theory and techniques. Vol. 47, no. 7, pp. 965–972.
  6. LOZYANOY, V. I., PETRUSENKO, I. V., PROKHODA, I. G., PRUDKIY, V. P., 1984. Diffraction of electromagnetic waves in a curved multimode rectangular waveguide. Materials of the scientific workshop “Solving internal boundary problems of electrodynamics”. Rostov-on-Don (in Russian).
  7. PETRUSENKO, I. V., LOZYANOY, V. I., PROKHODA, I. G., PRUDKIY, V. P., 1983. The computation of H-plane slit directed coupler on uniformly curved waveguide. Radiotekhnika i elektronika. Vol. 28, no. 3, pp. 433–438 (in Russian).
  8. RICE S. O., 1948. Reflections from circular bends in rectangular wave guides – matrix theory. Bell System Technical Journal. Vol. 27, no. 2, pp. 305–349.  DOI: https://doi.org/10.1002/j.1538-7305.1948.tb00911.x
  9. KATSENELENBAUM, B. Z., 1956. Curved waveguides of constant cross section. Radiotekhnika i elektronika. Vol. 1, no. 2, pp. 171–185 (in Russian).
  10. SVESHNIKOV, A. G., 1958. Waves in curved pipes. Radiotekhnika i elektronika. Vol. 3, no. 5, pp. 641–648 (in Russian).
  11. KERZHENTSEVA, N. P., 1958. On the propagation of electromagnetic waves in curved waveguides of circular cross section. Radiotekhnika i elektronika. Vol. 3, no. 5, pp. 649–659 (in Russian).
  12. KISLYUK, M. Zh., 1961. Curved waveguide with rectangular cross section. Radiotekhnika. Vol. 16, no. 4, pp. 3–10 (in Russian).
  13. COCHRAN, J. A, PECINA, R. G., 1966. Mode propagation in continuously curved waveguides. Radio Science. Vol. 1, no. 6, pp. 679–696.  DOI:https://doi.org/10.1002/rds196616679
  14. LEWIN, L., 1977. Theoretical analysis of the junction discontinuity between a straight and a curved section of rectangular waveguide. Proc. IEEE. Vol. 124, no. 6, pp. 511–516. DOI: https://doi.org/10.1049/piee.1977.0101
  15. BALABANOVA, T. N., KUKUSHKIN, A. V., RAEVSKIY, S. B., 1977. Computation of the transmission characteristics of a uniformly curved rectangular waveguide in a wide bandwidth. Radiotekhnika i elektronika. Vol. 22, no. 3, pp. 606–609 (in Russian).
  16. PETRUSENKO, I. V., PROKHODA, I. G., 1980. Computation of the reflection coefficient from the bend of a rectangular waveguide in H-plane. Elektrodinamika i fizika SVCh. Pp. 92–95 (in Russian).
  17. PETRUSENKO, I. V., 1983. Uniformly curved rectangular waveguide and devises on its basis. PhD thesis ed. DSU, Dniepropetrovsk, Ukraine (in Russian).
  18. LOZYANOY, V. I., PETRUSENKO, I. V., PROKHODA, I. G., PRUDKIY, V. P., 1982. Analysis of the uniformly curved transmission lines. Izvestiya vuzov. Radioelektronika. Vol. 25, no. 2, pp. 102–104 (in Russian).
  19. ZARGANO, G. F., LERER, A. M., LYAPIN, V. P., SINYAVSKIY, G. P., 1983. Transmission lines of complex cross sections. Rostov-on-Don: Rostov Univ. Publ. (in Russian).
  20. SAN BLAS, A. A., GIMENO, B., BORIA, V. E., ESTEBAN, H., COGOLLOS, S., COVES, A., 2003. A rigorous and efficient full-wave analysis of uniform bends in rectangular waveguide under arbitrary incidence. IEEE Transactions on microwave theory and techniques. Vol. 51, no. 2, pp. 397–=405.
  21. WEISSHAAR, A., GOODNICK, S. M., TRIPATHI, V. K., 1992. A Rigorous and efficient method of moments solution for curved waveguide bends. IEEE Transactions on microwave theory and techniques. Vol. 40, no. 12, pp. 2200–2206.  DOI:https://doi.org/10.1109/22.179881
  22. PAUL, D. L., CRADDOCK, I. J., RAILTON, C. J., 2004. Simple and accurate hybrid FDTD model of uniform waveguide bends. Electronics letters. Vol. 40, no. 4, pp. 247–248.  DOI:https://doi.org/10.1049/el:20040168
  23. PETRUSENKO, I. V., 2004. Analytic-numerical analysis of waveguide bends. Electromagnetics. Vol. 24, no. 4. pp. 237–254.  DOI:https://doi.org/10.1080/02726340490442599
  24. GIMENO, B., GUGLIELMI, M., 1996. Multimode equivalent network representation for H- and E-plane uniform bends in rectangular waveguide. IEEE Transactions on microwave theory and techniques. Vol. 44, no. 10, pp. 1679–1687. DOI: https://doi.org/10.1109/22.538959
  25. MESCHINO, S., CECCUZZI, S., MIRIZZI, F., PAJEWSKI, L., SCHETTINI, G., ARTAUD, J. F., BAE, Y. S., BELO, J. H., BERGER-BY, G., BERNARD, J. M., CARDINALI, A., CASTALDO, C., CESARIO, R., DECKER, J., DELPECH, L., EKEDAHL, A., GARCIA, J., GARIBALDI, P., GONICHE, M., GUILHEM, D., JIA, H., HUANG, Q. Y., HILLAIRET, J., HOANG, G. T., IMBEAUX, F., KAZARIAN, F., KIM, S. H., LITAUDON, X., MAGGIORA, R., MAGNE, R., MARFISI, L., MILANESIO, D., NAMKUNG, W., PANACCIONE, L., PEYSSON, Y., SHARMA, P. K., SCHNEIDER, M., TUC-CILLO, A. A., TUDISCO, O., VECCHI, G., VILLARI, R., VULLIEZ, K., 2011. Bends in oversized rectangular waveguide. Fusion Engineering and Design. Vol. 86, no. 6–8, pp. 746–749.  DOI:https://doi.org/10.1016/j.fusengdes.2010.11.010
  26. KRAVCHENKO, V. F., SIRENKO, Y. K., SIRENKO, K. Y., 2011. Electromagnetic waves transformation and radiation by the open resonant structures. Modelling and analysis of transient and steady-state processes. Moscow: Fizmatlit Publ. (in Russian).
  27. SIRENKO, K. Yu., SIRENKO, Yu. K., 2005. Exact “absorbing” conditions in initial-boundary value problems in the theory of open waveguide resonators. Computational Mathematics and Mathematical Physics. Vol. 45, no. 3, pp. 490–506.
  28. PEROV, A. O., SIRENKO, Yu. K., 2001. Exact conditions for virtual boundaries in initial boundary-value problems of the wave scattering theory. Telecommunications and Radio Engineering. Vol. 56, no. 8–9, pp. 114–134.  DOI:https://doi.org/10.1615/TelecomRadEng.v56.i8-9.70
  29. SIRENKO, Yu. K., 2002. Exact ‘Absorbing’ Conditions in Outer Initial Boundary-Value Problems of the Electrodynamics of Nonsinusoidal Waves. Part 2: Waveguide Units and Periodic Structures. Telecommunications and Radio Engineering. Vol. 57, no. 12, pp. 1–30.
  30. PAZYNIN, V. L., MAIBORODA, M. V., 2017. Electromagnetic pulse compression in sections of helically coiled waveguides. Telecommunications and Radio Engineering. Vol. 76, no. 3. pp. 209–225. 
     DOI:https://doi.org/10.1615/TelecomRadEng.v76.i3.20
  31. ZHANG, Q., YUAN, C.-W., LIU, L., 2012.Theoretical design and analysis for TE20TE10 rectangular waveguide mode converters. IEEE Transactions on microwave theory and techniques. Vol. 60, no. 4, pp. 1018–1026.  DOI:https://doi.org/10.1109/TMTT.2011.2182206
  32. SHESTOPALOV, V. P., SIRENKO, Y. K., 1989. Dynamic theory of gratings. Kiev: Naukova dumka, Press Publ. (in Russian).
  33. KIRILENKO, A. A., TYSIK, B. G., 1993. Connection of      S-matrix of waveguide and periodical structures with complex frequency spectrum. Electromagnetics. Vol. 13, no. 3, pp. 301–318.  DOI:https://doi.org/10.1080/02726349308908352
  34. KULISHENKO, S. F., KIRILENKO, A. A., SENKEVICH, S. L., 2003. Waveguide Bend Matched by the Stepped Miter. Telecommunications and Radio Engineering. Vol. 60, no. 1–2, pp. 34–37.  DOI:https://doi.org/10.1615/TelecomRadEng.v60.i12.40