• Українська
  • English
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)

Ways of maximal extraction of the information from observations of the astronomical object

Kornienko, YV, Skuratovskiy, SI
Organization: 

O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine
12, Proskura st., Kharkov, 61085, Ukraine

E-mail: ss_snake@urk.net

https://doi.org/10.15407/rej2018.04.037
Language: russian
Abstract: 

Subject and purpose. The information obtained from a physical experiment usually is partially degraded by the influence of noise factors. The nature of these factors is dependent on the experiment conditions. But an approach to overcoming this influence is similar in many cases. The researches carried out in the image processing group of IRE NASU for the last ten years were aimed towards searching for the techniques of maximal information extraction from astronomical observation and space experiments. There were several directions of the research. In the context of observations from the surface of the Earth the problems were overcoming of the atmosphere phase distortions and the synthesis of antenna arrays for telescopes and interferometers in different ranges of the electromagnetic spectrum. In the case of space observations we deal with the optimal interpretation problem for their results, in particular the reconstruction of planet surface relief and the processing of images with gravitational lensing effect.

Methods and methodology. The common part of all these techniques is using of the statistical approach, i. e. the application of mathematical statistics and the theory of optimal statistical decisions. The common peculiarities of its applications as well as the specific of its application for the certain problems of astronomical image processing are revealed in this paper.

Results. As a result the following techniques are developed: the technique of Fourier components phase accumulation for the atmosphere phase noise reduction; the technique for optimal evaluation of the quasar intensity while observing it through a gravitational field of a distant galaxy; the technique for taking into account the altimeter data in photoclinometric reconstruction of a planet surface relief; and a number of techniques of antenna configuration synthesis for telescopes and interferometers.

Conclusions. The statistical approach to processing experimental data allows using an information contained in the series of astronomical object images for reconstructing a single, more precise image of this object. It makes possible optimal combining the information from the surface images and the altimeter data for obtaining the surface relief of high resolution with the real values of height. In gravitational lensing images it provides the division of the source of observation from the background. The results demonstrate that the Bayesian statistical approach is the powerful instrument of the research.

Keywords: antenna array, astronomical images, phase accumulation, photoclinometry, statistical approach, surface relief

Manuscript submitted 27.09.2018
PACS: 42.30.Va:95.75.Pq
Radiofiz. elektron. 2018, 23(4): 37-54
Full text  (PDF)

References: 
  1. Laplace, P. S., 1774. Memoire sur la probabilité des causes par les événements. In: Oeuvres Complètes, 1891. Vol. 8, pp. 2765. Paris: Gauthier-villars.
  2. Legendre, A. M., 1820. Nouvelles methodes pour la determination des orbites des cometes. Second supplement. Paris, pp. 79–80.
  3. Gauss, C. F., 1957. The movement theory of celestial bodies, rotating around the Sun on conical orbits. In: C. F. Gauss, 1957. Chosen geodesic compositions. General ed. by S. G. Sudarov. Moscow: Izdatelstvo geodezicheskoy literature. Vol. 1, pp. 104. (in Russian)
  4. Gauss, C. F., 1900. Werke. Göttingen. Vol. 8. S. 116–147.
  5. Val'd, A., 1967. Statistical solving functions. In: A. Val'd, 1967. Positional games. Moscow: Nauka Publ. pp. 300–522 (in Russian).
  6. De Groot, M., 1974. Optimal statistical decisions. Translated by A. L. Rukhin. Moscow: Mir Publ. (in Russian)
  7. Usikov, A. Ya., Akimov, L. A., Babichev, A. A., Bugaenko, L. A., Bugaenko, O. I., Dzubenko, M. I., Dudinov, V. N., Egorov, A. D., Eremka, V. D., Kornienko, Yu. V., Krugov, V. D., Nestrigenko, Yu. A., Parusimov, V. G., Starunov N. G., 2004. Light detection and ranging of the lunar surface using a ruby laser. In: V. M. Yakovenko, ed. 2004. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ. 9(spec. Iss.), pp. 10–41 (in Russian).
  8. Kornienko, Yu. V., 2004. Optimal signal receiving in the visual range location of an astronomical object. Achievements of Modern Radioelectronics, 1, pp. 39–45 (in Russian).
  9. Kolmogorov, A. N., 1936. Basic concepts of the probability theory. Moscow-Leningrad: ONTI Publ. (in Russian).
  10. Kolmogorov, A. N., 1941. The local structure of the turbulence in an unsqueezable liquid in the case of very high Reynolds numbers. Dok. Akad. Nauk SSSR, 30(4), pp. 299–303 (in Russian).
  11. Kolmogorov, A. N., 1941. The energy dispersion in locally isotropic turbulence. Dok. Akad. Nauk SSSR, 32(1), pp. 19–21 (in Russian).
  12. Labeyrie, A., 1970. Attainment of diffraction limited resolution in large telescopes by fourier analysing speckle patterns in star images. Astron. Astrophys., 6(1), pp. 85–87.
  13. Fienup, J. R., 1978. Reconstruction of an object from the modulus of its Fourier transform. Opt. Lett., 3(1), pp. 27–29. DOI: https://doi.org/10.1364/OL.3.000027
  14. Kornienko, Yu. V., 1977. On the possibility of reconstructing the image of a faint object, distorted by the influence of the Earth’s atmosphere. Dok. Akad. Nauk Ukrainian SSR, Ser. A, 10, pp. 931–933 (in Russian).
  15. Kornienko, Yu. V., Skuratovsky, S. I., 2008. On the image reconstruction under its Fourier transform modulus. In: V. M. Yakovenko, ed. 2004. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ. 13(1), pp. 130–141 (in Russian).
  16. Sodin, L. G., 1976. On the possibility of reaching the diffraction limit of the resolution in observation with a telescope in the turbulent atmosphere. Astronomy Lett. 2, pp. 554–558 (in Russian).
  17. Kornienko, Yu. V., Skuratovskiy, S. I., 2010. About the reconstruction of the undistorted image of an object by a series of its images distorted by a medium with random inhomogeneities of the refractive index. Dopov. Nac. akad. nauk Ukr., 2, pp. 83–89 (in Russian).
  18. Kornienko, Yu. V., Skuratovskiy, S. I., 2011. Fourier-component phase accumulation in observation of an object through a turbulent atmosphere: 1. Kinematics Phys. Celestial Bodies, 27(6), pp. 304–310.
  19. Kornienko, Yu. V., Skuratovskiy, S. I., 2012. Fourier-component phase accumulation in observation of an object through a turbulent atmosphere: II. Kinematics Phys. Celestial Bodies, 28(2), pp. 77–84.
  20. Kornienko, Yu. V., Skuratovskiy, S. I., 2012. Mechanism of information degradation in observations through a randomly inhomogeneous medium. Radiophysics and radioastronomy, 17(1), pp. 39–48.
  21. Fizeau, M. H., 1862. Recherches sur les modifications que subit la vitesse de la lumiere dans le verre et plusieurs autres corps solides sous l'influence de la chaleur. Annales de chimie et de physique, 66, pp. 429–482.
  22. Michelson, A. A., 1890. On the application of inter-ference methods to astronomical measurements. Philosophical magazine. Ser. 5, 30(182), pp. 1–21.
  23. Kornienko, Yu. V., Uvarov V. N., 1987. Signal accumulation in observation of an astronomical object through the turbulent atmosphere. Dokl. AN UkrSSR. Ser. A, 4, pp. 60–63. (in Russian)
  24. Roddier, F., 1987. Redundant versus nonredundant beam recombination in an aperture synthesis with cohe-rent optical arrays. J. Opt. Soc. Am. A, 4(8), pp. 1396–1401. DOI: https://doi.org/10.1364/JOSAA.4.001396
  25. Rhodes, W. Т., Goodman, J. W., 1973. Interferometric technique for recording and restoring images by unknown aberration. J. Opt. Soc. Am., 63(6), pp. 647–657. DOI: https://doi.org/10.1364/JOSA.63.000647
  26. Uvarov, V. N., 1979. On the possibility of obtaining the diffraction-limited image in observation through an inhomogeneous medium. Dokl. AN UkrSSR. Ser. A, 10, pp. 839–841 (in Russian).
  27. Kopilovich, L. E., 1988. Construction of non-redundant masks over square grids using difference sets. Opt. Commun., 68(1), pp. 7‑10. DOI:https://doi.org/10.1016/ 0030-4018(88)90003-X
  28. Kornienko, Yu. V., Skuratovskiy, S. I., 2013. Accumulation of Fourier-component phases during object observation through a turbulent atmosphere: III. Kinematics Phys. Celestial Bodies, 29(2), pp. 69–80.
  29. Kornienko, Yu. V., Skuratovskiy, S. I., Kopilovich, L. E., Lutsenko, V. I., Masalov, D. S., Bondarenko, N. V., Dulova, I. A., Dudinov, V. N., Pugach, V. V., Mazu-renko, O. V., Lo, Ian, Stulova, L. V., 2016. Development of methods and means for the optics and the quasioptics to detect regularities and peculiarities of interaction between the terahertz radiation and both physical and biological objects: report on scientific-research project «OREOL». Book 2. Ya. Usikov IRE NAS of Ukraine. Reg. No. SR 0111U010479 (in Russian).
  30. Kornienko, Yu. V., 2008. Image processing in IRE NAS of Ukraine. In: V. M. Yakovenko, ed. 2008. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ. 13(spec. iss.), pp. 423–445 (in Russian).
  31. Sanders, J., 2013. CUDA by example. Moscow: DMK press.
  32. Lyashenko I., Skuratovskiy S. I., Kornienko Yu. V., Dulova I. A., Pugach, V. V., Stulova, L. V., 2016. On the possibility of image processing acceleration with the graphic processing unit. In: 2016 II Int. Young
    Scientists Forum on Applied Physics and Engineering
    (YSF). Kharkiv, Ukraine, 10–14 Oct. 2016. IEEE. DOI: https://doi.org/10.1109/YSF.2016.7753840
  33. Lyashenko, I., Kornienko, Yu. V., 2017. Studying a Simple Generator of Pseudo-Random Numbers for Modeling the Astronomical Observation System. 2017 IEEE Int. Young Scientists Forum on Applied Physics and Engineering (YSF). Lviv, Ukraine, 17–20 Oct. 2017. IEEE. DOI:https://doi.org/10.1109/YSF.2017.8126645
  34. Van Diggelen, J., 1951. A photometric investigation of the slopes and the heights of the ranges of hills in the Maria of the Moon. Bull. Astron. Inst. Neth., 11(423), pp. 283–289.
  35. Parusimov, V. G., Kornienko, Yu. V., 1973. On determination of the most probable relief of a surface region by its optical image. Astrometriya i astrofizika, 19, pp. 20–24 (in Russian).
  36. Kornienko, Yu. V., Dulova, I. A., Nguen, Suan Ahn, 1994. Viener approach to determining optical characteristics of a planet surface under the results of photometric observations. Kinematika i fizika nebesnykh tel, 10(5), pp. 69–76 (in Russian).
  37. Dulova, I. A., Kornienko, Yu. V., 2001. Random error of determining the surface relief under its radio brightness. Radio phys. radio astron., 6(4), pp. 310–316 (in Russian).
  38. Dulova, I. A., Kornienko, Yu. V., Skuratovskiy, S. I., 2007. Determining of the surface relief with the clinometric technique in the redundancy and the lack of initial data. In: V. M. Yakovenko, ed. 2007. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ. 12(2), pp. 408–415 (in Russian).
  39. Dulova, I. A., Skuratovsky, S. I., Bondarenko, N. V., Kornienko, Yu. V., 2008. Reconstruction of the surface topography from single images with the photometric method. Sol. Syst. Res., 42(6), pp. 522–535.
  40. Dulova, I. A., Kornienko, Yu. V., Skuratovskiy, S. I., 2015. Images matching in case of surface relief reconstruction with the photoclinometric method. Radio phys. radio astron., 20(1), pp. 30–36. DOI:https://doi.org/ 10.15407/rpra20.01.030
  41. Bondarenko, N. V., Dulova, I. A., Kornienko Yu. V., 2014. Topography of polygonal structures at the Phoenix landing site on mars through the relief retrieval from the HiRISE images with the improved photoclinometry method. Sol. Syst. Res., 48(4), pp. 243–258. DOI: https://doi.org/10.1134/S0038094614040030
  42. Bondarenko, N. V., Dulova, I. A., Kornienko, Yu. V., 2018. High-resolution albedo and relief of the lunar surface with the improved photoclinometry method for the topography reconstruction from a set of images. In: 49th Lunar and Planetary Science Conference (LPSC). The Woodlands, Texas, USA, 19–23 March 2018. LPI Contribution N 2459.
  43. Dulova, I. A., Kornienko, Yu. V., 2008. Photometric method for determining a planetary surface relief. In: Int. conf. “Solar system bodies: from optics to geology”, Kharkov, Ukraine, 26–29 May, 2008, pp. 67–68.
  44. Dulova, I. A., Kornienko, Yu. V., Bondarenko, N. V., 2009. Involvement of Altimetric Information into Relief Reconstruction from Images with Improved Photoclinometry. In: The 50th Vernadsky/Brown Microsymposium on Comparative Planetology. Moscow, Russia, 12–14 Oct. 2009, abstr. N m50_10.
  45. Dulova, I. A., Kornienko, Yu. V., Bondarenko, N. V., 2010. Involvement of altimetric information into planet surface relief reconstruction from a set of images. In: 2010 Int. Kharkov Symp. Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW’2010). Kharkov, Ukraine, 21–26 June 2010. DOI: https://doi.org/10.1109/MSMW.2010.5546107
  46. Bondarenko, N. V., Dulova, I. A., Kornienko, Yu. V., 2012. Polygons on Mars: Topography details recovered from images with the improved photoclinometry method. In: The Third Moscow Solar System Symposium (3M-S3). Moscow, Russia, 8–12 Oct. 2012, abstr. N PS-42.
  47. Bondarenko, N. V., Dulova, I. A., Kornienko, Yu. V., 2013. Improved Photoclinometry Method: Topography of Large-Scale Polygons at the Phoenix Landing Site from a set of Images. In: 44th Lunar and Planetary Science Conference (LPSC). The Woodlands, Texas, USA, 18–22 March 2013. LPI Contribution N 1719. P. 2669.
  48. Bondarenko, N. V., Dulova, I. A., Kornienko, Yu. V., 2016. Improved Photoclinometry Method: Topography of the Lunar Surface Area in Mare Imbrium from a Set of Images. In: 47th Lunar and Planetary Science
    Conference
    (LPSC). The Woodlands, Texas, USA,
    21–25 March 2018. LPI Contribution N 1903. P. 1860.
  49. Kornienko, Yu. V., Pugach, V. V., Skuratovskiy, S. I., 2014. On the possibility of atmosphere conditions diagnostic with the multibeam interferometer. Radiofizika i elektronika, 5(19)(2), pp. 16–21 (in Russian).
  50. Skuratovskiy, S. I., 2009. Recovering phase distortions field under the image of point source. In: V. M. Yakovenko, ed. 2009. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ. 14(2), pp. 222‑228 (in Russian).
  51. Kornienko, Yu. V., Skuratovskiy, S. I., 2014. Determining the intensity of a point-like source, observed on the background of extended source. Radio phys. radio astron., 19(4), pp. 317–323. DOI:https://doi.org/10.15407/ rpra19.04.317
  52. Skuratovskiy, S. I., Kornienko, Yu. V., 2015. Determining the intensity of a point-like source, observed with an extended source as the background. In: Int. Young Scientists Forum on Applied Physics (YSF 2015). Dnipropetrovsk, Ukraine, 29 Sept. – 2 Oct. 2015. IEEE. DOI: https://doi.org/10.1109/YSF.2015.7333256
  53. Skuratovskiy, S. I., Kornienko, Yu. V., 2016. Determining the intensity of a point-like source, observed with an extended source as the background: modeling and computer experiment. In: 9th Int. Kharkiv Symp. Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW). Kharkiv, Ukraine, 20–24 June 2016. IEEE. DOI:https://doi.org/10.1109/ MSMW.2016.7538031
  54. Kopilovich, L. E., 1983. Regular method for constructing systems of non-redundant aperture masks for observation through the turbulent atmosphere. Dok. Akad. Nauk Ukrainian SSR, 10, pp. 55–58 (in Russian).
  55. Kornienko, Yu. V., 2000. Constructing non-redundant antenna configurations on a square grid with the method of random search. In: V. M. Yakovenko, ed. 2000. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ. 5(3), pp. 148–154 (in Russian).
  56. Kornienko, Yu. V., 2002. Constructing non-redundant antenna configurations on the hexagonal grid with the method of random search. In: V. M. Yakovenko, ed. 2002. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ. 7(1), pp. 142‑153 (in Russian).
  57. Kopilovich, L. E., 2008. Array antennas of size 8´8 based on Hadamard difference sets sets. Radio phys. radio astron., 13(2), pp. 210–215.
  58. Kopilovich, L. E., 2010. Upper Estimates for the Element Number of Non-redundant Antenna Configurations on Square and Hexagonal Grids. Exp. Astron., 28(1), pp. 1–9. https://doi.org/10.1007/s10686-010-9191-4
  59. Kopilovich, L. E., 2014. Non-redundant configurations of elements on the square and hexagonal grids of the large size. Radiofizika i elektronika, 5(19)(1), pp. 80–84 (in Russian).
  60. Kopilovich, L. E., Sodin, L. G., 2014. Multielement System Design in Astronomy and Radio Science. Springer.
  61. Alexeev, G. A., Stulova, L. V., 2010. On the relay interaction of the tape electronic flow with the travelling wave in the presence of the transversal magnetic field. Radiofizika i elektronika, 1(15)(3), pp. 30–34 (in Russian).
  62. Alexeev, G. A., Stulova, L. V., 2012. Eccentric cylindrical diode with the current limited by a spatial charge. Radiofizika i elektronika, 3(17)(1), pp. 85–91 (in Russian).
  63. Alexeev, G. A., Stulova, L. V., 2013. Relay interaction in the microwave devices. Radiofizika i elektronika, 4(18)(2), pp. 77–85 (in Russian).
  64. Alexeev, G. A., Stulova, L. V., 2014. Elementary theory of clinotron with distributed interaction of electron beam with orthogonal component of field. In: 24th Int. Crimea Conf. «Microwave devices and telecommunication technologies» (CriMiKo'2014). Sebastopol, Ukraine, 7–13 Sept. 2014, 1, pp. 171–172. Sebastopol: Weber Publ.
  65. Kornienko, Yu. V., Masalov, D. S., 2014. The realization of Krilov-Bogolubov-Mitropolskiy method in the computer algebra system. Fizicheskie osnovy priborostroeniya, 3(1), pp. 70–83 (in Russian).