• Українська
  • English
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)

Development of concept of near-field technology in designing effective small-aperture microwave antennas

Ivanchenko, I, Popenko, N, Khruslov, M, Chernobrovkin, R, Radionov, S, Pischikov, V
Organization: 

O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine
12, Proskura st., Kharkov, 61085, Ukraine

E-mail: buran@ire.kharkov.ua

V. N. Karazin Kharkiv National University
4 Svobody Sq., Kharkiv, 61022, Ukraine

https://doi.org/10.15407/rej2019.02.015
Language: english
Abstract: 

Subject and purpose. This article is devoted to the review of the original works of the authors on studying the effective small-sized individual radiators of various types using near-field technology.

Methods and methodology. The research algorithm consists in carrying out numerical modeling of the proposed antenna designs using software packages, creating the appropriate physical prototypes and comparing the results of numerical and direct experiments of such radiator characteristics as bandwidth, radiation pattern, gain and ellipticity. At the same time, a detailed analysis of the spatial near-field distributions gives the necessary information for further optimization of the antennas and obtaining their optimal characteristics.

Results. The characteristics of various modifications of monopole, disk, aperture, microstrip and spiral antennas with record characteristics are systematized and analyzed, and the possibility of their use in a compact mobile microwave direction finder and nonlinear locator is also shown. The results of studying the diffraction coupling of individual aperture radiators with the involvement of developed methods of measuring the spatial near-field distributions were used to create a laboratory model of an antenna array.

Conclusions. A review of the results of studying the small-sized microwave antennas of various types over the past decade is given. We demonstrate the efficiency of using information on the spatial near-field distributions in the inductive and wave regions of the radiating apertures during the elaboration and subsequent optimization of the main characteristics of both individual original radiators and antenna arrays based on them.

Keywords: antenna, antenna array, bandwidth, near-field, radiation pattern

Manuscript submitted 25.02.2019
Radiofiz. elektron. 2019, 24(2): 15-32
Full text  (PDF)

References: 

 

1. Kim, T., Park, D., 2005. CPW-fed compact monopole antenna for dual-band WLAN applications. Electron. Lett., 41(6), pp. 291-293. DOI: https://doi.org/10.1049/el:20058315
 
2. Wong, K., Su, W., Chang, F., 2006. Wideband internal folded planar monopole antenna for UMTS/WiMAX folder-type mobile phone. Microwave Opt. Technol. Lett., 48(2), pp. 324-327. DOI: https://doi.org/10.1002/mop.21339
 
3. Chun, J.C., Shim, J.R., Kim, T.S., 2007. Wideband cylindrical monopole antenna for multi-band wireless applications. In: Proc. Int. Antennas and Propagation Society Symp. Honolulu, Hawai'i, USA, 9-15 June 2007, pp. 4749-4752. DOI: https://doi.org/10.1109/APS.2007.4396605
 
4. Jong-Ho, J., Park, I., 2003. Electromagnetically coupled small broadband monopole antenna. IEEE Antennas Wirel. Propag. Lett., 2(1), pp. 349-351. DOI: https://doi.org/10.1109/LAWP.2004.824171
 
5. Guha, D., Ganguly, G., Sumesh, G., Kumar, Ch., Sebastian, M., Antar, Ya., 2017. A New Design Approach for a Hybrid Monopole to Achieve Increased Ultrawide Bandwidth. IEEE Antennas Propag. Mag., 59(1), pp. 139-144. DOI: https://doi.org/10.1109/MAP.2016.2629180
 
6. Roy, A., Anand, S., Choudhury, P., Sarkar, P., Bhunia, S., 2014. Compact Multi Frequency ApproachPatch Antenna with Spur-Lines for WLAN/WIMAX Applications. Int. J. Electron. Commun. Technol. (IJECT), 5(2), pp. 84-86.
 
7. Das, S., Bhattacharjee, A., Sarkar, P., Chowdhury, S., 2013. Reduced Size Multifrequency Microstrip Patch Antenna for Wireless Communication Applications. Int. J. Electron. Commun. Technol. (IJECT), 4(5), pp. 26-28.
 
8. Mingming, G., 2015. The Microstrip Antenna Design for Multiple Frequency Small Broadband. In: Int. Conf. Intelligent Systems Research and Mechatronics Engineering. (ISRME 2015). Proc. Zhengzhou, China, 11-13 April 2015, pp. 2159-2162.
 
9. Kishk, A., Zunoubi, M., Kajfez, D., 1993. A Numerical Study of a Dielectric Disk Antenna Above Grounded Dielectric Substrate. IEEE Trans. Antennas Propag., 41(6), pp. 813-821. DOI: https://doi.org/10.1109/8.250458
 
10. Huang, W., Kishk, A., 2007. Compact Wideband Multi-Layer Cylindrical Dielectric Resonator Antennas. IET Microwaves Antennas Propag., 1(5), pp. 998-1005. DOI: https://doi.org/10.1049/iet-map:20070028
 
11. Kishk, A., 2003. Wide-Band Truncated Tetrahedron Dielectric Resonator Antenna Excited by a Coaxial Probe. IEEE Trans. Antennas Propag., 51(10), pp. 2913-2917. DOI: https://doi.org/10.1109/TAP.2003.816300
 
12. Petosa, A., Ittipiboon, A., 2010. Dielectric Resonator Antennas: A Historical Review and the Current State of the Art. IEEE Antennas Propag. Mag., 52(5), pp. 91-116. DOI: https://doi.org/10.1109/MAP.2010.5687510
 
13. Kishk, A., Huang, W., 2011. Size-Reduction Method for Dielectric Resonator Antennas. IEEE Antennas Propag. Mag., 53(2), pp. 26-38. DOI: https://doi.org/10.1109/MAP.2011.5949322
 
14. Li, R., Thompson, D., Papapolymerou, J., Laskar, J. and Tentzeris, M.M., 2005. A new excitation technique for wide-band short backfire antennas. IEEE Trans. Antennas Propag., 53(7), pp. 2313-2320. DOI: https://doi.org/10.1109/TAP.2005.850764
 
15. Kuo, Y., Wong, K., 2003. Printed double -T monopole antenna for 2.4/5.2 GHz dual-band WLAN operations. IEEE Trans. Antennas Propag., 51(9), pp. 2187-2192. DOI: https://doi.org/10.1109/TAP.2003.816391
 
16. Chen, H-D., Chen, H-T., 2004. A CPW-Fed dual-frequency monopole antenna. IEEE Trans. Antennas Propag., 52(4), pp. 978-982. DOI: https://doi.org/10.1109/TAP.2004.825620
 
17. Nakano, H., Ikeda, N., Wu, Y-Y., et al., 1998. Realization of dual-frequency and wide-band VSWR performances using normal-mode helical and inverted-F antennas. IEEE Trans. Antennas Propag., 46(6), pp. 788-793. DOI: https://doi.org/10.1109/8.686763
 
18. Baudry, D., 2007. Applications of the Near-Field Techniques in EMC Investigations, Electromagnetic Compatibility. IEEE Trans. Electromagn. Compat., 49(3), pp. 485-493.DOI: https://doi.org/10.1109/TEMC.2007.902194
 
19. Coman, C.I., Lager, I.E., Ligthart, L.P., 2004. The Design of a Matching Circuit for Dielectric-filled Open-ended Waveguide Antenna. In: Proc. European Radar Conf. (EuMW'2004). Amsterdam, Netherlands, 11-15 October 2004, pp. 73-76.
 
20. Thaysen, J., Jakobsen, K., Appel-Hansen, J., 2001. A Logarithmic Spiral Antenna for 0.4 to 3.8 GHz. Appl. Microwave Wireless, 13(2), pp. 32-46.
 
21. Fu, W., Lopez, E.R., Rowe, W.S.T., Ghorbani, K., 2008. A Compact Broadband spiral antenna, school of electrical and computer engineering. In: Proc. Microwave Asia-Pacific Conf. (APMC'08). Hong Kong, 16-20 December 2008.
 
22. Lopez, W., Rowe, E., Ghorbani, W., 2010. A planar dual-arm equiangular spiral antenna. IEEE Trans. Antennas Propag., 58(5), pp. 1775-1779. DOI: https://doi.org/10.1109/TAP.2010.2044315
 
23. Lee, S., Lee, J., Joong, Y., 2011. Wideband thick-arm spiral antenna for ingestible capsules. Microwave Opt. Technol. Lett., 53(3), pp. 529-532. DOI: https://doi.org/10.1002/mop.25808
 
24. Schreider, L., Begaud, X., Soiron, M., Perpere, B., 2004. Archimedean microstrip spiral antenna loaded by chip resistors inside substrate. In: IEEE Int. Antennas and Propagation Society Symp. Proc. Monterey, California, USA, 20-25 June 2004, pp. 1066-1069. DOI: https://doi.org/10.1109/APS.2004.1329858
 
25. Eubanks, T., Chang, K., 2010. A Compact Parallel-Plane Perpendicular-Current Feed for a Modified Equiangular Spiral Antenna. IEEE Trans. Antennas Propag., 58(7), pp. 2193-2202. DOI: https://doi.org/10.1109/TAP.2010.2048856
 
26. Fu, W., Lopez, E. R., Scott, J., Rowe, W. S. T., Ghorbani, K., 2007. Broadband equiangular spiral antenna with embedded chip resistors. In: Proc. Microwave Asia-Pacific Conf. (APMC'07), Bangkok, Thailand, 11-14 December 2007. DOI: https://doi.org/10.1109/APMC.2007.4554944
 
27. Wang, G., Bavisi, A., Woods, W., Ding, H., Mina, E., 2011. A 77-GHz Marchand balun for antenna applications in BiCMOS technology. Microwave Opt. Technol. Lett., 53(3), pp. 664-666. DOI: https://doi.org/10.1002/mop.25756
 
28. Salem, P., Wu, C., Yagoub, M.C.E., 2005. Novel ultra wideband printed balun design using the FEM and FDTD methods. In: Int. Antennas and Propagation Society Symp. (COPOL'05). Washington, DC, July 2005, pp. 643-646.
 
29. Hung, K. F., Lin, Y. C., 2006. Simulation of Single-Arm Fractional Spiral Antennas for Millimeter Wave Applications. In: Proc. Int. Antennas and Propagation Society Symp. IEEE, Albuquerque, NM, 9-14 July 2006, P. 3697-3700.
 
30. Bellion, A., Le Meins, C., Julien-Vergonjanne, A., Monediere, T., 2008. A New Compact Dually Polarized Direction Finding Antenna on the UHF Band. In: Proc. Int. Antennas and Propagation Symp. and USNC/URSI National Radio Science Meeting (APSURSI). San Diego, California, 5-15 July 2008. DOI: https://doi.org/10.1109/APS.2008.4620004
 
31. Sarkis, R., Mani, F. and Craeye, C., 2008. Amplitude and Phase Correction of the Radiation Pattern in Compact Planar Antenna Array for Direction Finding Applications. In: Proc. Int. Antennas and Propagation Symp. and USNC/URSI National Radio Science Meeting (APSURSI). San Diego, California, 5-15 July 2008. DOI: https://doi.org/10.1109/APS.2008.4619787
 
32. Lee, J., Chu, R., 1989. Aperture matching of a dielectric loaded circular waveguide element array. IEEE Trans. Antennas Propag., 37(3), pp. 395-399. DOI: https://doi.org/10.1109/8.18738
 
33. Coman, C.I., Lager, I.E., Ligthart, L.P., 2004. Optimization of linear sparse array antennas consisting of electromagnetically coupled apertures. In: Proc. European Radar Conf. (EuMW'2004). The Netherlands, Amsterdam, 11-15 October 2004, pp. 302-304.
 
34. Sharma, S., Shafai, L., 2005. Beam Focusing Properties of Circular Monopole Array Antenna on a Finite Ground Plane. IEEE Trans. Antennas Propag., 53(10), pp. 3406-3409. DOI: https://doi.org/10.1109/TAP.2005.856376
 
35. Bolomey, J.-C., Gardiol, F.E., 2001. Engineering application of the modulated scatterer technique. Boston-L.: Artech House.
 
36. Baudry, D., 2007. Applications of the Near-Field Techniques in EMC Investigations. IEEE Trans Electromagn. Compat., 49(3), pp. 485-493. DOI: https://doi.org/10.1109/TEMC.2007.902194
 
37. Bhardwaj, S., Rahmat-Samii, Y., 2014. Revisiting the Generation of Cross-Polarization in Rectangular Patch Antennas: A Near-Field Approach. IEEE Antennas Propag. Mag., 56(1), pp. 14-38. DOI: https://doi.org/10.1109/MAP.2014.6821758
 
38. Sirenko, Y.K., 2002. Exact 'absorbing' conditions in outer initial boundary-value problems of electrodynamics of nonsinusoidal waves. Part 1: Fundamental theoretical statements. Telecommunications and Radio Engineering, 57(10,11), pp. 1-20. DOI: https://doi.org/10.1615/TelecomRadEng.v57.i10-11.10
 
39. Ivanchenko, D., Ivanchenko, I., Korolev, A., Popenko, N., 2002. Experimental studies of X-band leaky-wave antenna performances. Microwave Opt. Technol. Lett., 35(4), pp. 277-281. DOI: https://doi.org/10.1002/mop.10581
 
40. Andrenko, A., Ivanchenko, I., Ivanchenko, D., Karelin, S., Korolev, A., Laz'ko, E., Popenko, N., 2006. Active Broad X-Band Circular Patch Antenna. IEEE Antennas Wirel. Propag. Lett., 5, pp. 529-533. DOI: https://doi.org/10.1109/LAWP.2005.860200
 
41. Ivanchenko, I., Khruslov, M., Popenko, N., 2012. Diffraction Effects in the Cylindrical Monopole and Dielectric Disk Antennas. Radio phys. radio astron., 17(1), pp. 81-88.
 
42. Ivanchenko, I., Popenko, N., Khruslov, M., 2012. Effect of diffraction-coupled Apertures on the monopole antenna performance. Radioelectronics & Informatics, 4, pp. 4-8.
 
43. Ivanchenko, I., Popenko, N., Khruslov, M., Chernobrovkin, R., 2008. Beamforming features of the grounded dielectric substrate based X-band monopole antenna. Radioelectronics & Informatics, 4, pp. 4-10.
 
44. Ivanchenko, I.V., Popenko, N.A., Khruslov, M.M., 2015. Small aperture axial-symmetric microwave radiators. LAP LAMBERT Academic Publishing (in Russia).
 
45. Ivanchenko, I.V., Popenko, N.A., 2013. Investigation of electromagnetic field distributions as a method for studying the characteristics of electrodynamic structures. Fizicheskie osnovy priborostroeniya, 2(1), pp. 18-33 (in Russian). DOI: https://doi.org/10.25210/jfop-1301-018033
 
46. Radionov, S., Khruslov, M., Ivanchenko, I., Popenko, N., 2014. Beamforming by the metalized dielectric disk with off-axis excitation. Telecommunications and Radio Engineering, 73(15), pp. 1327-1337. DOI: https://doi.org/10.1615/TelecomRadEng.v73.i15.20
 
47. Radionov, S.A., Ivanchenko, I.V., Popenko, N.A., Khruslov, M.M., 2015. Dielectric disk antenna. Ukraine. Pat. 97247 (in Russian). DOI: https://doi.org/10.1109/MIKON.2014.6899895
 
48. Radionov, S. A., Ivanchenko, I. V., Popenko, N. A., 2014. Bimodal dielectric disk antenna. In: Proc. 20th Int. Conf. Microwaves, Radar and Wireless Communications (MIKON 2014). Gdansk, Poland, 16-18 June 2014, pp. 116-118. DOI: https://doi.org/10.1109/MIKON.2014.6899895
 
49. Ivanchenko, I., Ivanchenko, D., Korolev, A., Popenko, N., Radionov, S., 2008. Mobile X-band direction finder. Radioelectronics & Informatics, 4, pp. 11-15.
 
50. Radionov, S., Ivanchenko, I., Korolev, A., Popenko, N., 2008. Broadband SHF Direction-Finder. Radioengineering, 17(2), pp. 61-65.
 
51. Rаdionov, S.A., Ivanchenko, I.V., Khruslov, M.M., Korolev A.M., Popenko, N.A., 2010. New X-Band Mobile Direction Finder. In: Microwave and Millimeter Wave Technologies: from Photonic Bandgap Devices to Antenna and Applications. Ed. by Prof. I. Minin. Publ. INTECH, pp. 273-288. DOI: https://doi.org/10.5772/9063
 
52. Ivanchenko, I.V., Popenko, N.A., Khruslov, M.M., Shestopalov, Yu.V., Ronnow, D., 2016. Combined System of the Microstrip Antennas with Different Frequencies. In: Proc. 22nd Int. Conf. Applied Electromagnetics and Communications (ICECom 2016). Dubrovnik, Chroatia, 19-21 September 2016. DOI: https://doi.org/10.1109/ICECom.2016.7843890
 
53. Chernobrovkin, R., Ivanchenko, I., Pischikov, V., Popenko, N., 2012. UWB equiangular spiral antenna for 7.5-40GHz. Microwave and optical technology letters, 54(9), pp. 2190-2194. DOI: https://doi.org/10.1002/mop.27018
 
54. Chernobrovkin, R., Ivanchenko, D., Ivanchenko, I., Popenko, N., Pishikov, V., 2014. A compact broadband spiral antenna for millimeter wave applications. Microwave and optical technology letters, 56(2), pp. 293-297. DOI: https://doi.org/10.1002/mop.28064
 
55. Khruslov, M., 2013. K band Antennas Conjugated with a Metal Waveguide. Radioelectronics & Informatics, 1, pp. 8-11.
 
56. Ivanchenko, I., Khruslov, M., Plakhtiy, V., Popenko, N., Rönnow, D., 2016. X-band aperture antenna with the hybrid dielectric insert. Progress in Electromagnetics Research C, 61, pp. 27-35. DOI: https://doi.org/10.2528/PIERC15090104
 
57. Chernobrovkin, R., Ivanchenko, I., Popenko, N., 2007. A Novel V-band Antenna for Nondestructive Testing Techniques. Microwave Opt. Technol. Lett., 49(7), pp. 1732-1735. DOI: https://doi.org/10.1002/mop.22504
 
58. Chernobrovkin, R., Ivanchenko, I., Ligthart, L., Korolev, A., Popenko, N., 2008. Wide-angle X-band antenna array with novel radiating elements. Radioengineering, 17(2), pp. 72-76. DOI: https://doi.org/10.1109/EUMC.2008.4751784
 
59. Ivanchenko, I., Popenko, N., Pishchikov, V., Khruslov, M., Chernobrovkin, R., 2014. The features of radiation formation by the small-aperture SHF antennas. Telecommunications and Radio Engineering, 73(2), pp. 135-150. DOI: https://doi.org/10.1615/TelecomRadEng.v73.i2.40