• Українська
  • English
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)

ALGORITHMS WITH STABILIZING COEFFICIENTS FOR SOLVING POORLY DETERMINED RADIOPHYSICS PROBLEMS

Kurayev, AA, Matveyenko, VV, Popkova, TL
Organization: 

Belarusian State University of Informatics and Radioelectronics

Belarusian State University of Informatics and Radioelectronics
6, P. Brovki St., Minsk 220013, Belarus
E-mail: vladzimir66@bsuir.by

https://doi.org/10.15407/rej2016.03.005
Language: English
Abstract: 

This article describes the algorithms with correcting and stabilizing coefficients to provide sustainable solutions to systems of equations related to poorly determined tasks of electrodynamics and nonlinear dynamics. It demonstrates the use of the modified algorithms in the task of E0i-waves propagation in irregular waveguide and dynamic model of Rössler’s chaos. In the latter case the article demonstrates that “deterministic” (i. e. regenerating) chaos is impossible. Fig. 5. Ref.: 6 title.

Keywords: dynamic chaos, poorly determined task, stable numerical method, supercritical waves in waveguide

Manuscript submitted 29.06.2016
PACS     05.10.-a; 05.45.Pq; 87.50.S-
Radiofiz. elektron. 2016, 21(3): 5-10
Full text (PDF)

References: 
  1. Kurayev, A. A., Popkova, T. L. and Sinitsyn A. K., 2016. Electrodynamics and radiowaves propagation. Moscow: Infra-m Publ.
  2. Samarskii, A. A., Vabishchevich, P. N. and Matus, P. P., 1998. Difference schemes with operator multipliers. Institute of mathematical modeling of RAS; Institute of mathematics of the NASB. Ser. 442. Pp. 64–67.
  3. Koronovskij, A. A., Trubeckov, D. I., Hramov, A. E., 2009. Methods of nonlinear dynamics and chaos theory in the problems of microwaves. Vol. 2. Nonstationary and chaotic processes. Moscow: Fizmatlit Publ. (in Russian).
  4. Kurayev, A. A., 1986. High-power microwave devices. Analysis methods and parameter optimization. Мoscow: Radio and communication Publ.
  5. Kuraev, A. A. and Popkova, T. L., 2001. Discrezations and rational calculus. Izv. NAS Belarus. Ser. fiz.-tekh. nauk, (4), pp. 70–76 (in Russian).
  6. Rössler, O. E., 1976. An equation for continuous chaos. Phys. Lett., 57A(5), pp. 397–398. DOI: https://doi.org/10.1016/0375-9601(76)90101-8