Energy loss of a charged particle during its interaction with a dielectric cylinder
Averkov, YO, Prokopenko, YV, Yakovenko, VM |
Organization:
O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine V.N. Karazin Kharkiv National University Kharkiv National University of Radio Electronics |
https://doi.org/10.15407/rej2020.01.060 |
Language: russian |
Abstract:
Subject and Purpose. The creation of millimeter and submillimeter electromagnetic wave generators is a promising direction in radio physics. These generators are demanded in medicine, biology, spectroscopy, broadband wireless communications and other branches of science and technology. One of the ways of millimeter and submillimeter wave generation is interaction between charged-particle beams and super-dimensional electrodynamic structures in multimode operation. In this regard, elementary physical mechanisms underlying this interaction invite further investigation. In the paper, the problem of spatial-surface eigenmode excitation is considered for a solid-state cylinder when a nonrelativistic electron moves in a vacuum over the surface of this cylinder and parallel to its axis. Because of the nonrelativistic character of the electron motion, the electron field and the radiation field in a vacuum are treated in the electrostatic approximation, while the fields inside the cylinder are calculated with the delay effect taken into account. Methods and Methodology. Maxwell’s equations in space-time field terms yield an analytical expression of the electron energy loss for the spatial-surface eigenmode excitation of a dielectric cylinder. This expression is numerically analyzed using the bisection method to find roots of the dispersion equation. Results. The analysis of the electron energy loss suggests that the E-type modes are the most efficiently excited. The electron energy loss for the E-mode excitation is approximately two orders higher than the loss for the excitation of H-modes with the same azimuthal and radial mode indices. The largest electron energy loss corresponds to the HE11 mode excitation. Conclusion. The performed study gives a deeper insight into the physical mechanism underlying the eigenmode excitation of a dielectric cylinder under the action of charged particles. The obtained results can be generalized to the case of a multijet electron beam used to generate whispering-gallery electromagnetic modes. |
Keywords: electric-type eigenmodes, electron radiation, electrostatic approximation, magnetic-type eigenmodes, spatial-surface modes |
Manuscript submitted 29.07.2019
PACS: 03.50-z; 41.60.Bq; 42.60.Da
Radiofiz. elektron. 2020, 25(1): 60-69
Full text (PDF)
-
1. Pickwell, E., Cole, B.E., Fitzgerald, A.J., Wallace, V.P., Pepper, M., 2004. Simulation of terahertz pulse propagation in biological systems. Appl. Phys. Lett., 84(12), pp. 2190-2192. DOI: https://doi.org/10.1063/1.1688448 2. Ashwort, P.C., Pickwell-MacPherson, E., Provenzano, E., Pinder, S.E., Purushotham, A.D., Pepper, M., Wallace, V.P., 2009. Terahertz pulsed spectroscopy of freshly excised human breast cancer. Opt. Express, 17(15), pp. 12444-12454. DOI: https://doi.org/10.1364/OE.17.012444 3. Yang, Y., Shutler, A., Grischkowsky, D., 2011. Measurement of the transmission of the atmosphere from 0.2 to 2 THz. Opt. Express, 19(9), pp. 8830-8838. DOI: https://doi.org/10.1364/OE.19.008830 4. Nagatsuma, T., Horiguchi, S., Minamikata, Y., Yoshimizu, Y., Hisatake, S., Kuwano, S., Yoshimoto, N., Terada, J., Takahashi, H., 2013. Terahertz wireless communications based on photonics technologies. Opt. Express, 21(21), pp. 23736-23747. DOI: https://doi.org/10.1364/OE.21.023736 5. Kemp, M.C., 2011. Explosive detection by terahertz spectroscopy - a bridge too far? IEEE Trans. Terahertz Sci. Technol., 1(1), pp. 282-292. DOI: https://doi.org/10.1109/TTHZ.2011.2159647 6. Dormidontov, A.V., Kirichenko, A.Ya., Lonin, Yu.F., Ponomarev, A.G., Prokopenko, Yu.V., Sotniov, G.V., Uvarov, V.T., Filippov, Yu.F., 2012. Auto-oscillatory system based on dielectric resonator with whispering-gallery modes. Pis'ma Zh. Tekh. Fiz., 38(2), pp. 65-73 (in Russian). DOI: https://doi.org/10.1134/S106378501201021X 7. Silin, V.P., Rukhadze, A.A., 1961. Electromagnetic properties of plasma and plasma-like media. Moscow: Gosatomizdat Publ. (in Russian). 8. Averkov, Yu.O., Prokopenko, Yu.V., Yakovenko, V.M., 2015. Charged-particle energy loss by the excitation of surface magnetoplasmons in a structure with two- and three-dimensional plasmas. J. Exp. Theor. Phys., 121(4), pp. 699-705. DOI: https://doi.org/10.1134/S1063776115100039 9. Abramovits, M., Stigan, I. ed., 1979. Reference on special functions: with formulas, graphics and tables. Moscow: Nauka Publ. (in Russian). 10. Korn, G.A, Korn, T.M., 1968. Mathematical handbook for scientists and engineers. New York: McGraw-Hill Book Company. 11. Vladimirov, V.S., 1979. Generalized functions in mathematical physics. Moscow: Nauka Publ. (in Russian). 12. Vainshtein, L.A., 1988. Electromagnetic waves Moscow, USSR: Radio i Svyaz' Publ. (in Russian). 13. Ilchenko, M.E. ed., Vzyatyshev, V. F., Gassanov, L.G., Bezborodov, Yu.M., 1989. Dielectric resonators. Moscow, USSR: Radio i Svyaz' Publ. (in Russian). 14. Kirichenko, A.Ya., Prokopenko, Yu.V., Filippov, Yu.F., Cherpak, N.T., 2008. Quasi-optical solid-state resonators. Kiev: Naukova Dumka Publ. (in Russian). 15. Averkov, Yu.O., Prokopenko, Yu. V., Yakovenko, V. M., 2016. The instability of hollow electron beam interacting with plasma-like medium. Radiofiz. Elektron., 7(21)(2), pp. 28-35 (in Russian). DOI: https://doi.org/10.15407/rej2016.02.028 16. Averkov, Yu.O., Prokopenko, Yu.V., Yakovenko, V.M., 2016. Interaction a flow of charged particles with eigenmodes of a dielectric cylinder. Radiofiz. Elektron., 7(21)(4), pp. 68-76 (in Russian). DOI: https://doi.org/10.15407/rej2016.04.068 17. Averkov, Yu.O., Prokopenko, Yu.V., Yakovenko, V.M., 2017. Instability of tubular electron beam moving over a dielectric cylinder. Tech. Phys., 62(10), pp. 1578-1584. DOI: https://doi.org/10.1134/S1063784217100061 18. Averkov, Yu.O., Prokopenko, Yu.V., Yakovenko, V.M., 2019. Eigenwave spectra of an anisotropic cylindrical solid-state waveguide. Tech. Phys., 64(1), pp. 1-8. DOI: https://doi.org/10.1134/S1063784219010055