• Українська
  • English
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)

Microwave dielectrometer application to antibiotic concentration control in water solution

Eremenko, ZE, Pashynska, VA, Kuznetsova, KS, Shubnyi, OI, Sklyar, NI, Martynov, AV
Organization: 

O.Ya. Usikov Institute for Radiophysics and Electronics of the NASU
12, Acad. Proskury St., Kharkiv, 61085, Ukraine

B. Verkin Institute for Low Temperature Physics and Engineering of the NASU
47, Nauky Ave., Kharkiv, 61103, Ukraine

Mechnikov Institute of Microbiology and Immunology National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine
14–16 Pushkinskaya St., Kharkiv, 61057, Ukraine

E-mail: zoya.eremenko@gmail.com

https://doi.org/10.15407/rej2021.03.030
Language: english
Abstract: 

Subject and Purpose. This study focuses on the original waveguide-differential dielectrometer designed for complex permittivity measurements of high-loss liquids in the microwave range towards the determination of pharmaceutical ingredient concentrations in water solutions at room temperature. The suitability of the device and effectiveness of the dielectrometry method are tested on such pharmaceutical ingredients as lincomycin and levofloxacin over a wide range of concentrations. 

Methods and Methodology. The main idea of the method consists in that the complex propagation coefficients of the HE11 wave are obtained from the amplitude and phase shift differences acquired by the wave after it has passed through the two measuring cells of the waveguide-differential dielectrometer.

Results. We have shown that the proposed dielectometry method allows a real-time determination of pharmaceutical ingredient concentrations in water solution by measuring the wave attenuation and phase shift differences. We have found that unless concentrations of pharmaceutical ingredients are low, few free water molecules in water solution are bound to the pharmaceutical ingredients. The number of free water molecules in solution decreases as the concentration of pharmaceutical ingredients rises.

Conclusion. The current study confirms that the dielectometry method and the device developed provide effective determination of pharmaceutical ingredient concentrations in water solutions.

Keywords: complex permittivity, complex wave propagation coefficient, dielectrometry method, high-loss liquids, waveguide-differential dielectrometer

Manuscript submitted 12.05.2021
Radiofiz. elektron. 2021, 26(3): 30-37
Full text (PDF)

 

References: 

1. Munteanu, F.D., Titoiu, A.M., Marty, J.L., Vasilescu, A., 2018. Detection of Antibiotics and Evaluation of Antibacterial Activity with Screen-Printed Electrodes. J. Sensors, 18(3), pp. 1-26. DOI: https://doi.org/10.3390/s18030901

2. Mason, A., Soprani, M., Korostynska, O., Amirthalingam, A., Cullen, J., Muradov, M., Carmona, E.N., Sberveglieri, G., Sberveglieri, V., Al-Shamma, A., 2018. Real-Time Microwave, Dielectric, and Optical Sensing of Lincomycin and Tylosin Antibiotics in Water: Sensor Fusion for Environmental Safety. J. Sensors, 2018(20), pp. 1-11. DOI: https://doi.org/10.1155/2018/7976105

3. Gallagher, J., MacDougall, C., 2018. Antibiotics Simplified. Chicago: Jones & Bartlett Publ.

4. Stockwell, V.O., Duffy, B., 2012. Use of antibiotics in plant agriculture. Rev. Sci. Tech., 31(1), pp. 199-210. DOI: https://doi.org/10.20506/rst.31.1.2104

5. Gelband, H., Miller-Petrie, M., Pant, S., Gandra, S., Levinson, J., Barter, D., White, A., Laxminarayan, R., 2015. The State of the World's Antibiotics. Center for Disease Dynamics. Economics & Policy [online]. Available at: https://cddep.org/publications/state_worlds_antibiotics_2015/

6. Brown, K.D., Kulis, J., Thomson, B., Chapman, T.H., Mawhinney, D.B., 2006. Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico. Sci. Total Environ., 366(2-3), pp. 772-783. DOI: https://doi.org/10.1016/j.scitotenv.2005.10.007

7. Qiu, P., Guo, X., Wang, N., Kong, X., He, H., 2015. Simultaneous determination of ten antibiotics in pharmaceutical wastewater using ultra-high performance liquid chromatography-tandem mass spectrometry. Chin. J. Chromatogr., 33(7), pp. 722-729. DOI: https://doi.org/10.3724/SP.J.1123.2015.03039

8. Wei, Y., Sridhar, S., 1992. Biological application of a technique for broad complex permittivity measurements. IEEE MTT-S Microwave Symposium Digest [pdf]. IEEE. Available at: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.718.8710&rep=rep1&type=pdf

9. Kouzai, M., Nishikata, A., Fukunaga, K., and Miyaoka, Sh., 2007. Complex permittivity measurement at millimeter-wave frequencies during fermentation process of Japanese sake. J. Phys. D: Appl. Phys., 40(1), pp. 54-60. DOI: https://doi.org/10.1088/0022-3727/40/1/S09

10. Еremenko, Z.Е., Ganapolskii, Е.М., 2003. Hemispherical cavity resonator for measuring of permittivity of strongly absorbing liquid in small volume. Telecommunications and radio Engineering, 60(1-2), pp. 61-74. DOI: https://doi.org/10.1615/TelecomRadEng.v60.i12.70

11. Eremenko, Z.E., Ganapolskii, E.M., Vasilchenko, V.V., 2005. Exact-calculated resonator method for permittivity measurement of high loss liquids at millimeter wavelength. Meas. Sci. Technol., 16(8), pp. 1619-1627. DOI: https://doi.org/10.1088/0957-0233/16/8/011

12. Eremenko, Z.E., Ganapolskii, E.M., Vasilchenko, V.V., 2005. Layered ball resonator for permittivity measurement method of high loss liquids at millimeter wavelength. In: Proc. of 35th European Microwave Conference 2005. Paris, France, 4-6 Oct. 2005, Vol. 2, pp. 1007-1010. DOI: https://doi.org/10.1109/EUMC.2005.1610099

13. Gatash, S.V., 1999. Very high frequency dielectrometer for the study of dynamical properties in disperse water systems. In: V.M. Yakovenko, ed. 1999. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ. 4(1), pp. 129-132 (in Russian).

14. Lavrinovich A.A., Filippov Yu.F., Cherpak N.T. 2004. Spectral properties of a disk quasi-optical dielectric resonator with an inhomogeneity in the form of a capillary with water. In: V.M. Yakovenko, ed. 2004. Radiofizika i elektronika. Kharkov: IRE NAS of Ukraine Publ. 9(3), pp. 496-502 (in Russian).

15. Eremenko, Z.E., Skresanov, V.N., Shubnyi, A.I., Anikina, N.S., Gerzhikova, V.G., Zhilyakova, T.A., 2011. Complex permittivity measurement of high loss liquids and its application to wine analysis. In: V. Zhurbenko, ed. 2011. Electromagnetic Waves. Technical University of Denmark, 2011. Ch. 19. DOI: https://doi.org/10.5772/17748

16. Eremenko, Z.E., Kuznetsova, K.S., Sklyar, N.I., Martynov, A.V., 2019. Measuring Complex Permittivity of High-Loss Liquids. In: P.K. Choudhury, ed. 2019. Dielectric Materials and Applications. Nova Science Publisher, 2019. Ch. 2.

17. Skresanov, V.N., Eremenko, Z.E., Glamazdin, V.V., Shubnyi, A.I., 2011. Improved differential Ka band dielectrometer based on the wave propagation in a quartz cylinder surrounded by high loss liquid under test. Meas. Scie. Tech., 22(3), pp. 065403(10 p.). DOI: https://doi.org/10.1088/0957-0233/22/6/065403

18. Ellison, W.J., Lamkaourchi, K., Moreau, M.J., 1996. Water: A dielectric reference. J. Mol. Liq., 68(2-3), pp. 171-279. DOI: https://doi.org/10.1016/0167-7322(96)00926-9