• Українська
  • English
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)

MULTIPLET PROPERTIES IN THE SPECTRUM OF OSCILLATIONS OF COUPLED WAVEGUIDE RESONATORS CHAIN

Pazynin, VL
Organization: 

O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine
12, Proskura st., Kharkov, 61085, Ukraine
E-mail: pazynin@ire.kharkov.ua

https://doi.org/10.15407/rej2017.01.003
Language: Russian
Abstract: 

The multiplet properties in the frequency dependence of the transmission coefficient of an electromagnetic wave through the chain of coupled waveguide resonators are investigated by means of a numerical experiment. For a small number of resonators the actual problem of determining the structure of standing waves resulting in a chain at resonance wave pass through it has been solved. The restrictions on the usage of standard nomenclature of oscillations in such chains are detected. A new physical treatment of the oscillations in which a standing wave is not excited in particular chain resonators is suggested. These oscillations may be interpreted as the breakup of a long chain of coupled resonators into the sequence of uncoupled shorter ones. The results can be used in the development of waveguide filters, antennas, linear accelerators, slow-wave structures.

Keywords: chain of coupled resonators, multiplet, resonant waveguide inhomogeneities, transmission coefficient

Manuscript submitted 31.10.2016
Radiofiz. elektron. 2017, 22(1): 3-14
Full text(PDF)

References: 
  1. TARANENKO, Z. I., TROHIMENKO, Ja. K., 1965. Slowing system. Kyev: Tehnika Publ. (in Russian).
  2. SILIN, R. A., SAZONOV, V. P., 1966. Slowing system.  Moscow: Sovetskoe Radio Publ. (in Russian).
  3. DULIN, V. N., 1972. Electronic and Quantum UHF devices. Moscow: Energiya Publ. (in Russian).
  4. VOSKOBOJNIK, M. F, CHERNIKOV, A. I., 1982. Equipment and Microwave Devices. Moscow: Radio i Svyaz' Publ.  (in Russian).
  5. GRIGOR'EV, A. D., JANKEVICH, V. B., 1984. Resonators and resonator slowing the microwave system. Numerical methods of calculation and design. Moscow: Radio i Svyaz' Publ. (in Russian).
  6. GRIGOR'EV, A. D., 1990. Electrodynamics and SHF equipment. Moscow: Vysshaya shkola Publ. (in Russian).
  7. VAL'DNER, O. A., VLASOV, A. D., SHAL'NOV, A. V., 1969.  Linear accelerators. Moscow: Atomizdat Publ. (in Russian).
  8. BURSHTEJN, Je. L., VOSKRESENSKIJ, G. V., 1970. Linear electron accelerators with intense beams. Moscow: Atomizdat Publ. (in Russian).
  9. LEBEDEV, A. N., SHAL'NOV, A. V., 1983. Fundamentals of physics and technology. Moscow: Energoatomizdat Publ.  vol. 3 (in Russian).
  10. HUMPHRIES, S. Jr., 1986. Principles of charged particle acceleration. New York: Wiley.
  11. KNAPP, E. A., KNAPP, B. C., POTTER, J. M., 1968. Standing Wave High Energy Linear Accelerator Structures. The review of scientific instruments. vol. 39, no. 7. pp. 979–991. DOI: https://doi.org/10.1063/1.1683583
  12. ZAHARCHENKO, Ju. F., SINICYN, N. I., GULJAEV, Ju. V. 2007. Electrodynamic characteristics associated chains multigap resonators low-volt multi-beam microwave amplifiers with the pope-RIVER-extended type of interaction. Jelektromagnitnye volny i jelektronnye sistemy. vol. 12, no. 10, pp. 37–41 (in Russian).
  13. MODEL', A. M., 1967. The filters in the microwave radio-relay systems. Moscow: Svyaz' Publ. (in Russian).
  14. MATTEJ, G. L., JANG, L., DZHONS, E. M. T., 1971. Microwave filters, matching networks, and coupling circuit. Moscow: Svyaz' Publ. vol. 1 (in Russian).
  15. KUZNECOV, A. P., ROZHNEV, A. G., 1983. On the method of equivalent circuits in the theory of chains coupled resonators. Radiotehnika i Elektronika. no. 11, pp. 2199–2205 (in Russian).
  16. IVANNIKOV, V. I., CHERNOUSOV, Ju. D., SHEBOLAEV, I. V., 2000. Properties of coupled resonators.  Radiotehnika i Elektronika. vol. 45, no. 2, pp. 180–184 (in Russian).
  17. CHERNOUSOV, Ju. D., IVANNIKOV, V. I., SHEBOLAEV, I. V., LEVICHEV, A. E., PAVLOV, V. M., 2010. The bandpass characteristics of coupled resonators. Radiotehnika i Elektronika. vol. 55, no. 8, pp. 923–929 (in Russian).
  18. KAZANSKIJ, V. B., TUZ, V. R., HARDIKOV, V. V., 2006. Cascading axially symmetric inhomogeneous resonator with impedance walls. Radiofizika i Radioastronomija. vol. 11, no. 2, pp. 159–168 (in Russian).
  19. KAZANSKIJ, V. B., TUZ, V. R., HARDIKOV, V. V., 2015. Electrodynamic theory of composite media. Kharkоv: HNU imeni V. N. Karazina Publ. (in Russian).
  20. SHHERBAK, V. V., 1965. Double slotted waveguide still obstacles. Radiotehnika. Iss. 1, pp. 42–57 (in Russian).
  21. SHESTOPALOV, V. P., SHCHERBAK, V. V., 1966. Discontinuity in rectangular waveguides. Dual Band obstacles. Radiotehnika i Elektronika. vol. 11, Iss. 6, pp. 1066–1075 (in Russian).
  22. KISUN'KO, G. V., 1949.  Electrodynamics hollow systems. Leningrad: VKAS Publ. (in Russian).
  23. PRIKOLOTIN, S. A., KIRILENKO, A. A., 2010. The method of partial areas, taking into account peculiarities of the internal problems with arbitrary piecewise coordinate boundaries. Part 1. The spectra of natural waves orthogonic waveguides. Radiofizika i Elektronika. vol. 15, no. 1, pp. 17–29 (in Russian).
  24. STESHENKO, S. A., PRIKOLOTIN, S. A., KIRILENKO, A. A., KULIK, D. Ju., RUD', L. A., SENKEVICH, S. L., 2013. The method of partial areas, taking into account peculiarities of the internal problems with arbitrary piecewise coordinate boundaries. Part 2. Flat cross-connections and «in-line» objects. Radiofizika i Elektronika. vol. 4 (18), no. 3, pp. 13–21 (in Russian).
  25. MIL'CHO, M. V., 1998. The use of conformal mappings for calculation of high-frequency fields in periodic structures. Radiofizika i Elektronika. vol. 3, no. 1, pp. 20–27 (in Russian).
  26. MIL'CHO, M. V., 2003. Conformal mapping method for the calculation of high-frequency electromagnetic fields in the slowing down system. Part 1. The case of large decelerations. Radiofizika i Elektronika. vol. 8, no. 1, pp. 136–147 (in Russian).
  27. MIL'CHO, M. V., 2003. Conformal mapping method for the calculation of high-frequency electromagnetic fields in the slowing down system. Part 2. Electrodynamic equivalent electrostatic solutions. Radiofizika i Elektronika. vol. 8, no. 2, pp. 259–268 (in Russian).
  28. MIL'CHO, M. V., 2003. Conformal mapping method for the calculation of high-frequency electromagnetic fields in the slowing down system. Part 3. Analysis of specific systems. Radiofizika i Elektronika. vol. 8, no. 3, pp. 374–385 (in Russian).
  29. SEMENOV, N. A., 1973. Technical electrodynamics. Moscow: Svjaz' Publ. (in Russian).
  30. SHESTOPALOV, V. P., KIRILENKO, A. A., RUD', L. A., 1986. Resonant scattering of waves. Vol. 2. Waveguide inhomogeneities. Kyev: Naukova Dumka Publ. (in Russian).
  31. TAFLOVE, A., 2000. Computational electrodynamics: the finite-difference time-domain method. Boston, London: Artech House.
  32. KRAVCHENKO, V. F., SIRENKO, Yu. K., SIRENKO, K. Yu., 2011. Convert and radiation of electromagnetic waves open resonant structures. Modeling and Analysis of transition and established processes. Moscow: Fizmatlit Publ. (in Russian).
  33. LEVIN, L., 1981. Theory of waveguides. Methods for solving problems of the waveguide. Moscow: Radio i Svyaz' Publ., 312 p. (in Russian).
  34. SHIRMAN, Ya. D., 1959. Radio waveguides and cavity resonators. Moscow: Svyaz'izdat Publ. (in Russian).
  35. SIRENKO, K. Yu., SIRENKO, Yu. K., 2005. Exact "absorbing" conditions in the initial-boundary value problems of the theory of open waveguide resonators. Zhurnal vychislitel'noi matematiki i matematicheskoi fiziki. vol. 45, no. 3, pp. 509–525 (in Russian).
  36. KALITEEVSKII, M. A., 1998. The optical properties of the system of two coupled vertical microcavities. Zhurnal tekhnicheskoi fiziki. vol. 68, no. 5, pp. 94–97 (in Russian).
  37. STRELKOV, S. P., 1964. Introduction to the theory of oscillations. Moscow: Nauka Publ. (in Russian).
  38. MIGULIN, V. V., MEDVEDEV, V. I., MUSTEL', E. R., PARYGIN, V. N., 1978. Fundamentals of the theory of vibrations. Moscow: Nauka Publ. (in Russian).
  39. LEBEDEV, I. V., 1972. Equipment and devices at microwave frequencies. Moscow: Vysshaya shkola Publ., vol. 2. (in Russian).
  40. BEREZIN, V. M., BURYAK, V. S., GUTTSAIT, E. M., MARIN, V. P., 1985. Electronic microwave devices. Moscow: Vysshaya shkola Publ. (in Russian).
  41. KHARVEI, A. F., 1965. Technique microwave frequency. Moscow: Sovetskoe Radio Publ., vol. 1 (in Russian).
  42. Google disk [online] – Available from: https://drive.google.com/folderview?id=0B6bExjyOkJGHT1A5ZHZfMk9DSVE&usp=sharing