• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)

ELECTRICALLY LARGE LOOP ANTENNA FOR RECEIVING UWB PULSED FIELDS

Kholod, PV, Varyanitsa-Roshchupkina, LA, Ogurtsova, ТN
Organization: 

O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine
12, Proskura st., Kharkov, 61085, Ukraine

E-mail: PavloKh@ukr.net

https://doi.org/10.15407/rej2017.02.050
Language: Russian
Abstract: 

The causes of afterpulse current oscillations in electrically large loop antennas have been found basing on the analysis of results of simulation of the space-time current distribution induced by electric and magnetic field components in the circular and rectangular loops. It has been determined that the pulse shape distortion is due to the current induced by the electric component of the incident field. For undistorted reception, it is necessary to isolate only the current induced by the magnetic component from the total current. To do this, it is sufficient to sum the currents induced in diametrically opposite sections of the circular loop. It has been found experimentally that undistorted reception can be ensured by summing the signals recorded in diametrically opposite sections of the circular loop.

Keywords: EMF, loop antenna, space-time currents distributions, UWB antennas

Manuscript submitted 24.04.2017
PACS 41.20.-q
Radiofiz. elektron. 2017, 22(2): 50-57
Full text (PDF)

References: 
  1. Hertz, H., 1938. On the Rays of Electric Force. Uspekhi Fizicheskikh Nauk. Vol. 19, Iss. 4, pp. 559–570 (in Russian). DOI: https://doi.org/10.3367/UFNr.0019.193804f.0559
  2. SHVETS, A., KRYVONOS, A., IVANOV, V., 2016. A complex for multicomponent mesurements of ELF–VLF electromagnetic fields. Radiophysics and Electronics. Vol. 7(21), no. 4, pp. 49–55 (in Russian).
  3. MELOLING, J., MELOLING, J., ROCKWAY, J., DALY, M., MONGES A., ALLEN, J., NIELSEN, W., MCGINNIS, P., THOMPSON, R., MOZAFFAR, N., 2016. A vector-sensing antenna system. IEEE Antennas Propagat. Magazine. Vol. 58, no. 6, pp. 57–63. DOI: https://doi.org/10.1109/MAP.2016.2609813
  4. SMITH, G., 2007. Loop antennas. Chapter 5. In: J. L. VOLAKIS, ed. Antenna engineering handbook, 4th ed. McGraw-Hill Education, pp. 112–136.
  5. HARMUTH, H., 1984. Antennas and waveguides for nonsinusoidal waves. New York, Academic Press.
  6. OGURTSOVA, T., POCHANIN, G., KHOLOD, P., 2003.    A Receiving Loop Antenna for Super-Broadband Pulsed   Signals, Telecommunications and Radio Engineering. Vol. 60, Iss. 5&6. DOI: 10.1615/TelecomRadEng.v60.i56.70  DOI: https://doi.org/10.1615/TelecomRadEng.v60.i56.70
  7. ESSELLE, K., STUCHLY, S., 1990. Resistively loaded loop as a pulse receiving antenna. IEEE Trans. Antennas Propagat. Vol. 38, no. 7, pp. 1123–1126.  DOI: https://doi.org/10.1109/8.55629
  8. PARTRIDGE, R. E., 1964. Combined Е and В sensor. Sensor and Simulation. Note 3. In: C. E. BAUM, ed. Notes on EMP and related subjects. Los Alamos Scientific Laboratory.
  9. THEOBALD, K., 1964. On the properties of loop antennas. Sensor and Simulation. Note 4. In: C. E. BAUM, ed. Notes on EMP and related subjects. Los Alamos Scientific Laboratory.
  10. BAUM, C. E., 1964. Minimizing transit time effects in sensor cables. Sensor and Simulation. Note 6. In: C. E. BAUM, ed. Notes on EMP and related subjects. Air Force Weapons Laboratory.
  11. KANDA, M., 1984. An Electromagnetic Near-field Sensor for Simultaneous Electric and Magnetic Field Measurement. IEEE Trans. Electromagnet. Compat. Vol. EMC-26, no. 3, pp. 102–110. DOI: https://doi.org/10.1109/TEMC.1984.304200
  12. KANDA, M., 1993. Standard probes for electromagnetic field measurements. IEEE Trans. Antennas Propagat. Vol. 41, no. 10, pp. 1349–1364. DOI: https://doi.org/10.1109/8.247775
  13. HARMUTH, H., DING-RONG, S., 1983. Antennas for nonsinusoidal waves: II – Sensors. IEEE Trans. Electromagnet. Compat. Vol. EMC-25, no. 5, pp. 107–115. DOI: https://doi.org/10.1109/TEMC.1983.304152
  14. TAFLOVE, A., 1995. Computational electrodynamics: The finite–difference time–domain method. New York, Artech House.
  15. TAFLOVE, A., Hagness, S., 2000. Computational electrodynamics: The finite–difference time–domain method. Boston, Artech House.
  16. BERENGER, J., 1994. A perfectly matched layer for the absorptions of electromagnetics waves. J. Computat. Phys. Vol. 114, pp. 185–200. DOI: https://doi.org/10.1006/jcph.1994.1159